Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the projection of the vector i^+3j^+7k^\hat{i}+3\hat{j}+7\hat{k} on the vector 7i^j^+8k^.7\hat{i}-\hat{j}+8\hat{k}.

Answer

The correct answer is: 60114\frac{60}{\sqrt{114}}
Let a=i^+3j^+7k^\vec{a}=\hat{i}+3\hat{j}+7\hat{k} on the vector 7i^j^+8k^.7\hat{i}-\hat{j}+8\hat{k}.
Now,projection a\vec{a} on b\vec{b} is given by,
1b(a.b)=172+(1)2+82[1(7)+3(1)+7(8)]=73+5649+1+64=60114\frac{1}{|\vec{b}|}(\vec{a}.\vec{b})=\frac{1}{\sqrt{7^2+(-1)^2+8^2}}[1(7)+3(-1)+7(8)]=\frac{7-3+56}{\sqrt{49+1+64}}=\frac{60}{\sqrt{114}}