Question
Mathematics Question on Probability
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Answer
s={1,2,3,4,5,6}
⇒ n(S)=6
Let A represents the favorable event i.e.,6
A={6]⇒ n(A)=1
P=n(S)n(A)=61 and q=1-p=1−61=65
n=6,r=0,1,2 and P(X=r)=nCrprqn−r
P(X=0)=(65)6
P(X=1)=6C1(61)(65)5=(65)5
P(X=2)=6C2(61)2(65)4=15.(61)2(65)4
P(at most 2 success)=P(X=0)+P(X=1)+P(X=2)
=(65)6+(65)5+15.(61)2+(65)4
=(65)4(3625)+(65)+(3615)=(65)4(3670)=(65)4(1835)