Solveeit Logo

Question

Mathematics Question on Probability

Find the probability of getting 5 exactly twice in 7 throws of die.

Answer

S={1,2,3,4,5,6}

\Rightarrow n(S)=6

A={S} \Rightarrow n(A)=1

P=n(A)n(S)=16\frac{n(A)}{n(S)}=\frac{1}{6} and q=1-p=116=561-\frac{1}{6}=\frac{5}{6}

n=7, r=2 and P(X=r)=nCrprqnr^nC_rp^rq^{n-r}

P(X=2)

= 7C2(16)2(56)3=7612(16)7(5)3=712(56)3^7C_2\bigg(\frac{1}{6}\bigg)^2\bigg(\frac{5}{6}\bigg)^3=\frac{7*6}{1*2}\bigg(\frac{1}{6}\bigg)^7\bigg(5\bigg)^3=\frac{7}{12}\bigg(\frac{5}{6}\bigg)^3