Question
Mathematics Question on Inverse Trigonometric Functions
Find the principal value tan−1(−3)+sec−1(−2)−cosec−1(32)
A
65π
B
32π
C
3π
D
0
Answer
0
Explanation
Solution
Let tan−1(−3)=α ⇒tanα=−3=−tan3π =tan(−3π) ⇒α=3−π∈(2−π,2π) ∴ Principal value of tan−1(−3) is (3−π) Let sec−1(−2)=β ⇒secβ=−2 =−sec3π =sec(π−3π) =sec(32π) \Rightarrow \beta = \frac{2\pi }{3} \in \left[0, \,\pi\right]-\left\\{\frac{\pi}{2}\right\\} ∴ Principal value of sec−1(−2) is 32π Let cosec−1(32)=γ ⇒cosecγ=32 =cosec3π \Rightarrow \gamma = \frac{\pi }{3}\in\left[\frac{-\pi }{2}, \frac{\pi }{2}\right] - \left\\{0\right\\} ∴ Principal value of cosec−1(32) is 3π So, the principal value of tan−1(−3)+sec−1(−2)−cosec−1(32) =3−π+32π−3π =0