Solveeit Logo

Question

Question: Find the principal value of the following: \[{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)\]...

Find the principal value of the following:
cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)

Explanation

Solution

In this type of question we have to use the concept of the principal value of a function. The principal value of a function is the value from the appropriate range that an inverse function returns. In case of inverse cosine functions the appropriate range in which the principal value lies is 0 to π0\text{ to }\pi . In other words the range for inverse cosine function is 0 to π0\text{ to }\pi . Here, as 7π6\dfrac{7\pi }{6} does not lies between 0 and π0\text{ and }\pi we have to use cos(π+x)=cos(πx)\cos \left( \pi +x \right)=\cos \left( \pi -x \right). First we express 7π6\dfrac{7\pi }{6} in the form of (π+x)\left( \pi +x \right) and then we use the above rule to obtain the result.

Complete step by step answer:
Now we have to find the principal value of cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right).
We know that, 7π6\dfrac{7\pi }{6} can be expressed as (π+π6)\left( \pi +\dfrac{\pi }{6} \right). Hence, we can write
cos(7π6)=cos(π+π6)\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \pi +\dfrac{\pi }{6} \right)
As we know that, cos(π+x)=cos(πx)\cos \left( \pi +x \right)=\cos \left( \pi -x \right) we get,
cos(7π6)=cos(ππ6)\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \pi -\dfrac{\pi }{6} \right)
cos(7π6)=cos(5π6)\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \dfrac{5\pi }{6} \right)
Hence, we can write the given function as
cos1(cos(7π6))=cos1(cos(5π6))\Rightarrow {{\cos }^{-1}}\left( \cos \left( \dfrac{7\pi }{6} \right) \right)={{\cos }^{-1}}\left( \cos \left( \dfrac{5\pi }{6} \right) \right)
cos1(cos(7π6))=5π6\Rightarrow {{\cos }^{-1}}\left( \cos \left( \dfrac{7\pi }{6} \right) \right)=\dfrac{5\pi }{6} which the required principal value as it is between 0 and π0\text{ and }\pi .
Thus the principal value of cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) is 5π6\dfrac{5\pi }{6} which lies between 0 and π0\text{ and }\pi .

Note: In this type of question students may make mistakes and directly write the principal value as 7π6\dfrac{7\pi }{6}. Students have to note that cos1(cos7π6)7π6{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)\ne \dfrac{7\pi }{6} as 7π6\dfrac{7\pi }{6} does not lies between 0 and π0\text{ and }\pi . Also one of the students may find the principal value by using the formula cosx=cos(2πx)\cos x=\cos \left( 2\pi -x \right) as follows:
We know that 7π6\dfrac{7\pi }{6} can be expressed as (2π5π6)\left( 2\pi -\dfrac{5\pi }{6} \right) hence we can write,
cos7π6=cos(2π5π6)\Rightarrow \cos \dfrac{7\pi }{6}=\cos \left( 2\pi -\dfrac{5\pi }{6} \right)
cos1(cos7π6)=cos1(cos(2π5π6))\Rightarrow {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)={{\cos }^{-1}}\left( \cos \left( 2\pi -\dfrac{5\pi }{6} \right) \right)
cos1(cos7π6)=cos1(cos(5π6))\Rightarrow {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)={{\cos }^{-1}}\left( \cos \left( \dfrac{5\pi }{6} \right) \right) as cosx=cos(2πx)\cos x=\cos \left( 2\pi -x \right)
cos1(cos7π6)=5π6\Rightarrow {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6} which the required principal value as it is between 0 and π0\text{ and }\pi .
Thus the principal value of cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) is 5π6\dfrac{5\pi }{6}.