Solveeit Logo

Question

Question: Find the principal value of \[{{\tan }^{-1}}\left( \sqrt{3} \right)-{{\sec }^{-1}}\left( -2 \right)\...

Find the principal value of tan1(3)sec1(2){{\tan }^{-1}}\left( \sqrt{3} \right)-{{\sec }^{-1}}\left( -2 \right).

Explanation

Solution

Hint:For the above question we have to know about the principal values of an inverse trigonometric function. Principal value of an inverse trigonometric function is a value that belongs to the principal branch of the range of the function. We know that the principal branch of range of sec1x{{\sec }^{-1}}x is \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\} and tan1x{{\tan }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].

Complete step-by-step answer:
We have been given the expression tan1(3)sec1(2){{\tan }^{-1}}\left( \sqrt{3} \right)-{{\sec }^{-1}}\left( -2 \right).
Now we know that the principal value means the value which lies between the defined range of the function.
For sec1x{{\sec }^{-1}}x the range is \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}.
For tan1x{{\tan }^{-1}}x the range is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
We know that tanπ3=3\tan \dfrac{\pi }{3}=\sqrt{3}
So by substituting the value of 3\sqrt{3} in tan1(3){{\tan }^{-1}}\left( \sqrt{3} \right).
tan1(3)=tan1(tanπ3){{\tan }^{-1}}\left( \sqrt{3} \right)={{\tan }^{-1}}\left( \tan \dfrac{\pi }{3} \right)
Since we know that tan1(tanθ)=θ{{\tan }^{-1}}\left( \tan \theta \right)=\theta ,
where θ\theta must lie between [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
tan3=π3\Rightarrow \tan \sqrt{3}=\dfrac{\pi }{3}
We know that sec2π3=2\sec \dfrac{2\pi }{3}=-2
So by substituting the value of (-2) in sec1(2){{\sec }^{-1}}\left( -2 \right), we get as follows:
sec1(2)=sec1(sec2π3){{\sec }^{-1}}\left( -2 \right)={{\sec }^{-1}}\left( \sec \dfrac{2\pi }{3} \right)
Since we know the trigonometric properties that sec1(secθ)=θ{{\sec }^{-1}}\left( \sec \theta \right)=\theta , where θ\theta must lie between \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}.
sec1(2)=2π3\Rightarrow {{\sec }^{-1}}\left( -2 \right)=\dfrac{2\pi }{3}
Now substituting the principal values of tan3=π3\tan \sqrt{3}=\dfrac{\pi }{3} and sec1(2)=2π3{{\sec }^{-1}}\left( -2 \right)=\dfrac{2\pi }{3} in the given expression, we get as follows:
tan3sec1(2)=π32π3\tan \sqrt{3}-{{\sec }^{-1}}\left( -2 \right)=\dfrac{\pi }{3}-\dfrac{2\pi }{3}
On taking LCM of terms, we get as follows:
tan3sec1(2)=π2π3=π3\tan \sqrt{3}-{{\sec }^{-1}}\left( -2 \right)=\dfrac{\pi -2\pi }{3}=\dfrac{-\pi }{3}
Therefore, the principal value of the given expression tan3sec1(2)\tan \sqrt{3}-{{\sec }^{-1}}\left( -2 \right) is equal to π3\dfrac{-\pi }{3}.

Note: Be careful while finding the principal value of inverse trigonometric functions and do check once that the value must lie between the principal branch of range of the function. Also, don’t confuse while finding the principal value of sec1(2){{\sec }^{-1}}\left( -2 \right) as sometimes by mistake we write sec1(2)=π3{{\sec }^{-1}}\left( -2 \right)=\dfrac{-\pi }{3} which is wrong because π3\dfrac{-\pi }{3} doesn’t lie in the range of sec1x{{\sec }^{-1}}x i.e. \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\} So be careful while finding it.