Solveeit Logo

Question

Question: Find the principal value of \[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \rig...

Find the principal value of tan1(1)cos1(12)+sin1(12){{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right).

Explanation

Solution

Hint:For the above question we have to find the principal value of each of the inverse trigonometric functions in the given expression. Principal value of an inverse trigonometric function at a point x is that value which lies in the principal range. As we know that principal range for sin1x{{\sin }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], for tan1x{{\tan }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] and for cos1xco{{s}^{-1}}x is [0,π]\left[ 0,\pi \right]. We can start solving by taking θ=tan1(1)\theta ={{\tan }^{-1}}(1) and then taking tan on both sides to find the value of θ\theta .

Complete step-by-step answer:
We have been given the expression tan1(1)cos1(12)+sin1(12){{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right).
Now let us suppose θ=tan1(1)\theta ={{\tan }^{-1}}(1)
On taking tangent function to both sides, we get as follows:
tanθ=tan[tan1(1)]\tan \theta =\tan \left[ {{\tan }^{-1}}(1) \right]
We know that tantan1x=x\tan {{\tan }^{-1}}x=x
tanθ=1\Rightarrow \tan \theta =1
Since the principal range of tan1x{{\tan }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right],
So ‘θ\theta ’ must lie between π2\dfrac{-\pi }{2} and π2\dfrac{\pi }{2}.
We know that tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1
Also, π4(π2,π2)\dfrac{\pi }{4}\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)
tan1(1)=π4\Rightarrow {{\tan }^{-1}}(1)=\dfrac{\pi }{4}
Thus let us suppose θ=cos1(12)\theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)
On taking cosine function to both sides on equation, we get as follows:
cosθ=cos[cos1(12)]\cos \theta =\cos \left[ {{\cos }^{-1}}\left( \dfrac{-1}{2} \right) \right]
We know that cos(cos1x)=x\cos \left( {{\cos }^{-1}}x \right)=x.
cosθ=12\Rightarrow \cos \theta =\dfrac{-1}{2}
Since the principal range for cos1x{{\cos }^{-1}}x is [0,π]\left[ 0,\pi \right],
So θ\theta must lie between 0 to π\pi both included.
We know that cos2π3=12\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}
Also, 2π3[0,π]\dfrac{2\pi }{3}\in \left[ 0,\pi \right]
θ=cos1(12)=2π3\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}
Again, let us suppose θ=sin1(12)\theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)
On taking sine function to both sides, we get as follows:
sinθ=sin[sin1(12)]\sin \theta =\sin \left[ {{\sin }^{-1}}\left( \dfrac{-1}{2} \right) \right]
We know that sin[sin1x]=x\sin \left[ {{\sin }^{-1}}x \right]=x
sinθ=12\Rightarrow \sin \theta =\dfrac{-1}{2}
Since the principal range for sin1x{{\sin }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
So θ\theta must lie between π2\dfrac{-\pi }{2} and π2\dfrac{\pi }{2} both values included.
We know that sin(π6)=12\sin \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}
θ=sin1(12)=π6\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6} as π6[π2,π2]\dfrac{-\pi }{6}\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]
Now substituting the values of tan1(1),cos1(12),sin1(12){{\tan }^{-1}}(1),{{\cos }^{-1}}\left( \dfrac{-1}{2} \right),{{\sin }^{-1}}\left( \dfrac{-1}{2} \right) in the given expression we get as follows:
tan1(1)cos1(12)+sin1(12)=π4+2π3+(π6)=π4+2π3π6{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}+\left( \dfrac{-\pi }{6} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}
On taking LCM of the terms we get as follows:
tan1(1)cos1(12)+sin1(12)=3π+8π2π12=9π12=3π4{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{3\pi +8\pi -2\pi }{12}=\dfrac{9\pi }{12}=\dfrac{3\pi }{4}
Therefore, the value of the given expression is equal to 3π4\dfrac{3\pi }{4}.

Note: Be careful while finding the values of inverse trigonometric functions and also check it once that the values must lie between the defined range of the corresponding function. Also remember if there are two values, one is positive and other is negative such that they are numerically same then the principal value of the trigonometric function will be positive one.