Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the principal value of tan-1(1)(-1)

Answer

Let tan-1(1)=y(-1)=y
Then, tany=1=tan=(π4)=tan(π4).tan\,y=-1=-tan=\bigg(\frac{\pi}{4}\bigg)=tan\bigg(-\frac{\pi}{4}\bigg).
We know that the range of the principal value branch of
tan-1 is (π2,π2)andtan(π4)=1\bigg(-\frac{\pi}{2},\frac{\pi}{2}\bigg)and\,tan\bigg(-\frac{\pi}{4}\bigg)=-1
Therefore, the principal value of tan-1(1)(-1) is π4-\frac {\pi}{4}.