Solveeit Logo

Question

Question: Find the principal value of \[{\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right)\]....

Find the principal value of sin1(cos3π4){\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right).

Explanation

Solution

The range of sin1x{\sin ^{ - 1}}x is between (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right). Equate the expression to θ\theta . Now apply the basic trigonometric identity of cosθ=sin(π2θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) and Simplify the expression. Substitute back the value of cos3π4\cos \dfrac{{3\pi }}{4} and find the principal value.

Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point. he principal value of sin1x{\sin ^{ - 1}}x for x>0x > 0 , is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason sin1x{\sin ^{ - 1}}x is also denoted by arcsinx\operatorname{arcsinx} .
The principal value of sin1x{\sin ^{ - 1}}x branches to,
sin1x(π2,π2){\sin ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right).
Hence the principal value of the given function will be between the range(π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) .
Now we have been given the function, sin1(cos3π4){\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right).
Let us take the principal value of sin1(cos3π4){\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right) as θ\theta . Thus we get,
θ=sin1(cos3π4)\theta = {\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right)
We know the basic representation of cosine function as,
cosθ=sin(π2θ),θ(,)\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right),\theta \in ( - \infty ,\infty )
Now put θ=3π4\theta = \dfrac{{3\pi }}{4}in the above expression. Hence we get,

cos3π4=sin(π23π4)=sin(4π6π8)=sin(2π8)  sin(2π8)=sin(π4)  cos3π4=sin(π4)  \cos \dfrac{{3\pi }}{4} = \sin \left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{4}} \right) = \sin \left( {\dfrac{{4\pi - 6\pi }}{8}} \right) = \sin \left( { - \dfrac{{2\pi }}{8}} \right) \ \\\ \sin \left( { - \dfrac{{2\pi }}{8}} \right) = \sin \left( { - \dfrac{\pi }{4}} \right) \ \\\ \cos \dfrac{{3\pi }}{4} = \sin \left( { - \dfrac{\pi }{4}} \right) \ \\\

Now let us replace the value of cos3π4\cos \dfrac{{3\pi }}{4}in the equation represented by θ\theta .

θ=sin1(cos3π4)=sin1sin(π4)  θ=π4  \theta = {\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right) = {\sin ^{ - 1}}\sin \left( { - \dfrac{\pi }{4}} \right) \ \\\ \theta = - \dfrac{\pi }{4} \ \\\

Thus we got the principal value of the expression as (π4)\left( { - \dfrac{\pi }{4}} \right).
sin1(cos3π4)=(π4)\therefore {\sin ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{4}} \right) = \left( { - \dfrac{\pi }{4}} \right).

Note: To solve a question like these you should be familiar with the domain and range of the sine functions as well as the domain and range of the inverse sine functions. For us the range of inverse sine function is (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) and the domain of inverse function of sine is [1,1][ - 1,1].