Solveeit Logo

Question

Question: Find the principal value of \[{{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right)\]...

Find the principal value of sec1(2tan(3π4)){{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right)

Explanation

Solution

Hint: First of all, take sec on both the sides and use sec(sec1x)=x\sec \left( {{\sec }^{-1}}x \right)=x. Now write 3π4=ππ4\dfrac{3\pi }{4}=\pi -\dfrac{\pi }{4} and use tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta and from the table of trigonometric ratios, find the value of 2tan3π42\tan \dfrac{3\pi }{4}. Now take sec1{{\sec }^{-1}} on both the sides and from the table find the value of sec1(2){{\sec }^{-1}}\left( 2 \right) to find the principal value of the given expression.

Complete step-by-step answer:

Here, we have to find the principal value of sec1(2tan(3π4)){{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right). Now let us consider the value of sec1(2tan(3π4)){{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right) as y. So, we get,

y=sec1(2tan(3π4))y={{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right)

By taking sec on both sides of the above equation, we get,

secy=sec(sec1(2tan(3π4)))\sec y=\sec \left( {{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right) \right)

We know that sec(sec1θ)=θ\sec \left( {{\sec }^{-1}}\theta \right)=\theta . By using this in the RHS of the above equation, we get,

secy=tan(3π4)\sec y=\tan \left( \dfrac{3\pi }{4} \right)

We can also write the above equation as,

secy=2tan(ππ4)\sec y=2\tan \left( \pi -\dfrac{\pi }{4} \right)

We know that tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta . By using this in the RHS of the above equation, we get,

secy=2tanπ4....(i)\sec y=-2\tan \dfrac{\pi }{4}....\left( i \right)

Now, from the table of the general trigonometric ratios, let us find the value of tan(π4)\tan \left( \dfrac{\pi }{4} \right).

From the above table, we can see that tanπ4=1\tan \dfrac{\pi }{4}=1. So, by substituting the value of tanπ4\tan \dfrac{\pi }{4} in equation (i), we get,

secy=2(1)\sec y=-2\left( 1 \right)

secy=2\sec y=-2

By taking sec1{{\sec }^{-1}} on both the sides of the above equation, we get,

sec1(secy)=sec1(2){{\sec }^{-1}}\left( \sec y \right)={{\sec }^{-1}}\left( -2 \right)

Since, sec1(secy)=y{{\sec }^{-1}}\left( \sec y \right)=y, we get,

y=sec1(2)y={{\sec }^{-1}}\left( -2 \right)

We know that sec1(x)=πsec1x{{\sec }^{-1}}\left( -x \right)=\pi -{{\sec }^{-1}}x. By using this in the above equation, we get,

y=πsec1(2)y=\pi -{{\sec }^{-1}}\left( 2 \right)

From the table, we know that

cosπ3=12\cos\dfrac{\pi}{3}=\dfrac{1}{2} and we know that cosθ=1secθ\cos\theta=\dfrac{1}{\sec\theta}

We can write secπ3=2\sec \dfrac{\pi }{3}=2

So, we get, sec1(2)=π3{{\sec }^{-1}}\left( 2 \right)=\dfrac{\pi }{3}. By using it in the above equation, we get,

y=ππ3y=\pi -\dfrac{\pi }{3}

y=2π3y=\dfrac{2\pi }{3}

So, we get the principal value of y=sec1(2tan(3π4))y={{\sec }^{-1}}\left( 2\tan \left( \dfrac{3\pi }{4} \right) \right) as 2π3\dfrac{2\pi }{3}.

Note: In this question, students can cross-check their answer by substituting y=2π3y=\dfrac{2\pi }{3} and taking sec on both the sides of the initial equation and checking if LHS = RHS. Also, students must take care that range of sec1θ{{\sec }^{-1}}\theta is [0,π]π2\left[ 0,\pi \right]-\dfrac{\pi }{2}. So y must lie in this interval. Also, students must know that the values of trigonometric ratios like sinθ,cosθ\sin \theta ,\cos \theta , etc. at general angles like 0,30o,45o,60o,90o0,{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}} to easily solve the question.