Solveeit Logo

Question

Question: Find the principal value of \({{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\)....

Find the principal value of cosec1(2cos2π3){{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right).

Explanation

Solution

Hint: In order to solve this question, we need to know few of the trigonometric ratios like, cos60=12\cos 60{}^\circ =\dfrac{1}{2} and cosec90=1\operatorname{cosec}90{}^\circ =1, We also need to know that cos(πθ)=cosθ\cos \left( \pi -\theta \right)=-\cos \theta and cosec(θ)=cosecθ\operatorname{cosec}\left( -\theta \right)=-\operatorname{cosec}\theta . By using these properties, we can find the principal value of cosec1(2cos2π3){{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right).
Complete step-by-step answer:
In this question, we are asked to find the principal value of cosec1(2cos2π3){{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right). For that, we will first start from cos2π3\cos \dfrac{2\pi }{3}. So, we will convert 2π3\dfrac{2\pi }{3} from radian form to degree form. We know that, π radian=180\pi \text{ }radian=180{}^\circ . So, we can write, 2π3\dfrac{2\pi }{3} radian as,
=23×180 2π3 radian=120 \begin{aligned} & =\dfrac{2}{3}\times 180{}^\circ \\\ & \Rightarrow \dfrac{2\pi }{3}\text{ }radian=120{}^\circ \\\ \end{aligned}
Hence, we can write cos2π3=cos120\cos \dfrac{2\pi }{3}=\cos 120{}^\circ . Now, we know that 120=18060120{}^\circ =180{}^\circ -60{}^\circ . So, we can write cos120=cos(18060)\cos 120{}^\circ =\cos \left( 180{}^\circ -60{}^\circ \right). And we also know that cos(180θ)=cosθ\cos \left( 180{}^\circ -\theta \right)=-\cos \theta . So, we can write, cos(18060)=cos60\cos \left( 180{}^\circ -60{}^\circ \right)=-\cos 60{}^\circ . Now, we know that cos60=12\cos 60{}^\circ =\dfrac{1}{2}, so we can write cos60=12-\cos 60{}^\circ =-\dfrac{1}{2}. Therefore, we can write,
cos2π3=12\cos \dfrac{2\pi }{3}=-\dfrac{1}{2}
Now, we will multiply the above equation by 2. So, we get,
2cos2π3=2×(12) 2cos2π3=1 \begin{aligned} & 2\cos \dfrac{2\pi }{3}=2\times \left( -\dfrac{1}{2} \right) \\\ & \Rightarrow 2\cos \dfrac{2\pi }{3}=-1 \\\ \end{aligned}
So, we can say that we have to find cosec1(1){{\operatorname{cosec}}^{-1}}\left( -1 \right) because 2cos2π3=12\cos \dfrac{2\pi }{3}=-1. Now, we know that cosec90=1\operatorname{cosec}90{}^\circ =1. So, we can write 1=cosec90-1=-\operatorname{cosec}90{}^\circ . And we know that cosec(θ)=cosecθ\operatorname{cosec}\left( -\theta \right)=-\operatorname{cosec}\theta , so we can write 1=cosec(90)-1=\operatorname{cosec}\left( -90{}^\circ \right). Now, we know that cosec(90)=1\operatorname{cosec}\left( -90{}^\circ \right)=-1 can also be written as (90)=cosec1(1)\left( -90{}^\circ \right)={{\operatorname{cosec}}^{-1}}\left( -1 \right). Hence, we can write cosec1(1)=90{{\operatorname{cosec}}^{-1}}\left( -1 \right)=-90{}^\circ and we know that 1=2cos2π3-1=2\cos \dfrac{2\pi }{3}. So, we get, cosec1(2cos2π3)=90{{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)=-90{}^\circ .
So, if we talk about the range of principal value of cosec1x{{\operatorname{cosec}}^{-1}}x, then it is \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)-\left\\{ 0 \right\\}. And we know that the general solution of, θ=cosec1x\theta ={{\operatorname{cosec}}^{-1}}x is θ=n(180)+[(1)n]cosec1x\theta =n\left( 180{}^\circ \right)+\left[ {{\left( -1 \right)}^{n}} \right]{{\operatorname{cosec}}^{-1}}x. Therefore, we can say that the general solution of θ=n(180)[(1)n]π2\theta =n\left( 180{}^\circ \right)-\left[ {{\left( -1 \right)}^{n}} \right]\dfrac{\pi }{2}. So, to get the principal, we will put the value of n as 0. Therefore, we get θ=90\theta =-90{}^\circ . And we know that 90=π2-90{}^\circ =-\dfrac{\pi }{2}, because 180=π radian180{}^\circ =\pi \text{ }radian. So, 90-90{}^\circ lies in the range.
Hence, we can say, 90-90{}^\circ is the principal value of cosec1(2cos2π3){{\operatorname{cosec}}^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right).
Note: While solving this question, we need to remember that the range of θ=cosec1x\theta ={{\operatorname{cosec}}^{-1}}x for principal value is, \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)-\left\\{ 0 \right\\}. And, so whatever value we obtain should lie in the range and if it does not lie, then we have to apply the transformation like cos(180θ)=cosθ\cos \left( 180{}^\circ -\theta \right)=-\cos \theta and so on.