Solveeit Logo

Question

Question: Find the principal value of \[{{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right)\]...

Find the principal value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right)

Explanation

Solution

First of all, use cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x. Now, take cosec on both sides and use cosec(θ)=cosecθ\operatorname{cosec}\left( -\theta \right)=-\operatorname{cosec}\theta . Now from the trigonometric ratio table, check the value of cosecπ4\operatorname{cosec}\dfrac{\pi }{4} and get the principal value of the given expression in the range of cosec1x{{\operatorname{cosec}}^{-1}}x.

Complete step-by-step answer:
Here, we have to find the principal value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right). Let us consider the value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right) as y. So, we get,
y=cosec1(2)y={{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right)
We know that cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x. By using this in the RHS of the above equation, we get,
y=cosec1(2)y=-{{\operatorname{cosec}}^{-1}}\left( \sqrt{2} \right)
Now by taking cosec on both sides of the above equation, we get,
cosecy=cosec(cosec12)\operatorname{cosec}y=\operatorname{cosec}\left( -{{\operatorname{cosec}}^{-1}}\sqrt{2} \right)
We know that cosec1(x)=cosec1x{{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}x. By using this in the RHS of the above equation, we get,
cosecy=cosec(cosec12)\operatorname{cosec}y=-\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\sqrt{2} \right)
We know that cosec(cosec1x)=x\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}x \right)=x. By using this in the RHS of the above equation, we get,
cosecy=2....(i)\operatorname{cosec}y=-\sqrt{2}....\left( i \right)

From the above table, we can see that,
sinπ4=12\sin\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}} and we know that sinθ=1cosecθ\sin\theta=\dfrac{1}{\operatorname{cosec}\theta}
So, cosecπ4=2....(ii)\operatorname{cosec}\dfrac{\pi }{4}=\sqrt{2}....\left( ii \right)
By multiplying – 1 on both sides of equation (ii), we get
cosecπ4=2-\operatorname{cosec}\dfrac{\pi }{4}=-\sqrt{2}
We know that cosec(x)=cosecx\operatorname{cosec}\left( -x \right)=-\operatorname{cosec}x. By using this in the above equation, we can write,
cosec(π4)=2\operatorname{cosec}\left( \dfrac{-\pi }{4} \right)=-\sqrt{2}
Now, by substituting the value of 2-\sqrt{2} in terms of cosec in the above equation, we get,
cosecy=cosec(π4)\operatorname{cosec}y=\operatorname{cosec}\left( \dfrac{-\pi }{4} \right)
We know that the range of principal values of cosec1(x){{\operatorname{cosec}}^{-1}}\left( x \right) is [π2,π2]0\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-0. So, we get,
y=π4y=\dfrac{-\pi }{4}
Hence, we get the principal value of cosec1(2){{\operatorname{cosec}}^{-1}}\left( -\sqrt{2} \right) as π4\dfrac{-\pi }{4}.

Note: Students must remember the range and domain of inverse trigonometric functions. Also students must remember the values of sinθ,cosθ\sin \theta ,\cos \theta , etc. at general angles like 0o,π4,π3{{0}^{o}},\dfrac{\pi }{4},\dfrac{\pi }{3}, etc. Some students make this mistake of writing cosec1(x){{\operatorname{cosec}}^{-1}}\left( -x \right) as πcosec1(x)\pi -{{\operatorname{cosec}}^{-1}}\left( x \right) which is wrong because cosec1(x)=cosec1(x){{\operatorname{cosec}}^{-1}}\left( -x \right)=-{{\operatorname{cosec}}^{-1}}\left( x \right). So this must be taken care of.