Solveeit Logo

Question

Question: Find the principal value of \[{{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\]...

Find the principal value of cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)

Explanation

Solution

Hint:First of all, take cosec on both sides and use cosec(cosec1x)=x\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}x \right)=x. Now from the trigonometric table, find the value of θ\theta at which cosecθ=32\operatorname{cosec}\theta =\dfrac{\sqrt{3}}{2} and from this find the principal value of the given expression.

Complete step-by-step answer:

Here, we have to find the principal value of cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right). Let us take the principal value of cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) as y. So, we get,

y=cosec1(23)y={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)

Now by taking cosec on both sides of the above equation, we get,

cosecy=cosec(cosec1(23))\operatorname{cosec}y=\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) \right)

We know that cosec(cosec1x)=x\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}x \right)=x. By using this in the RHS of the above equation, we get,

cosecy=23....(i)\operatorname{cosec}y=\dfrac{2}{\sqrt{3}}....\left( i \right)

Now, let us find the value at which cosecθ=23\operatorname{cosec}\theta =\dfrac{2}{\sqrt{3}} from the table below.

From the above table, we can see that

sinπ3=32\sin\dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2} and we know that sinθ=1cosecθ\sin\theta=\dfrac{1}{\operatorname{cosec}\theta}

So, cosecπ3=23\operatorname{cosec}\dfrac{\pi }{3}=\dfrac{2}{\sqrt{3}}. So by substituting the value of 23\dfrac{2}{\sqrt{3}} in equation (i), we get

cosecy=cosecπ3\operatorname{cosec}y=\operatorname{cosec}\dfrac{\pi }{3}

We know that the range of values of cosec1(x){{\operatorname{cosec}}^{-1}}\left( x \right) is [π2,π2]0\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-0. So, we get,

y=π3y=\dfrac{\pi }{3}

Hence, we get the principal value of cosec1(23){{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) as π3\dfrac{\pi }{3}.

Note: In this question, students must ensure that the final value of y should be in the range of cosec1x{{\operatorname{cosec}}^{-1}}x. Also, students can cross-check their answers by substituting the value of y in the initial equation as follows:

y=cosec1(23)y={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)

We know that y=π3y=\dfrac{\pi }{3}, so we get,

π3=cosec1(23)\dfrac{\pi }{3}={{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)

By taking cosec on both the sides, we get,

cosecπ3=cosec(cosec1(23))\operatorname{cosec}\dfrac{\pi }{3}=\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right) \right)

From the table, we know that cosecπ3=23\operatorname{cosec}\dfrac{\pi }{3}=\dfrac{2}{\sqrt{3}}. Also, we know that cosec(cosec1(x))=x\operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\left( x \right) \right)=x. By using this in the above equation, we get,

23=23\dfrac{2}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}

Here, LHS = RHS. So, our answer is correct.