Solveeit Logo

Question

Question: Find the principal value of each of the following \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \ri...

Find the principal value of each of the following
tan1(cosπ2){{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)

Explanation

Solution

let us consider the y as given inverse trigonometric function and then we will get the value of tany\tan y and if tany\tan y is positive then the principal value will be θ\theta . The principal value of tanθ\tan \theta lies between π2-\dfrac{\pi }{2}and π2\dfrac{\pi }{2}

Complete step-by-step answer:
Let y= tan1(cosπ2){{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
tany=cosπ2=0\tan y=\cos \dfrac{\pi }{2}=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is θ\theta
We know the principal value of tan1{{\tan }^{-1}}is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)
Hence the principal value of tan1(cosπ2){{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)is
tan1(cosπ2){{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
=tan1(tan(0))={{\tan }^{-1}}\left( \tan \left( 0 \right) \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
=0=0

Note: The general formula for principal value of tan1(cotθ)=π2θ{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta if and only if (0,π)\left( 0,\pi \right). The principal value of θ\theta for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). So the principle of θ\theta for inverse tangent function always lies between π2-\dfrac{\pi }{2}and π2\dfrac{\pi }{2}.