Question
Question: Find the principal value of each of the following \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \ri...
Find the principal value of each of the following
tan−1(cos2π)
Solution
let us consider the y as given inverse trigonometric function and then we will get the value of tany and if tany is positive then the principal value will be θ. The principal value of tanθ lies between −2πand 2π
Complete step-by-step answer:
Let y= tan−1(cos2π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
tany=cos2π=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is θ
We know the principal value of tan−1is (−2π,2π)
Hence the principal value of tan−1(cos2π)is
tan−1(cos2π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
=tan−1(tan(0)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
=0
Note: The general formula for principal value of tan−1(cotθ)=2π−θ if and only if (0,π). The principal value of θ for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is (−2π,2π). So the principle of θ for inverse tangent function always lies between −2πand 2π.