Question
Question: Find the principal value of each of the following \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \ri...
Find the principal value of each of the following
tan−1(−31)
Solution
let us consider the y as given inverse trigonometric function and then we will get the value of tany and if tany is negative then the principal value will be −θ. The principal value of tanθ lies between −2πand 2π
Complete step-by-step answer:
Let y= tan−1(−31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
tany=−31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since −31is negative, principal value is −θ
We know the principal value of tan−1is (−2π,2π)
Hence the principal value of tan−1(−31)is
=tan−1(−tan6π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know that tan(−θ)=−tanθ
Therefore,
=tan−1(tan(−6π)). . . . . . . . . . . . . . . . . . . . . (4)
=−6π
Note: The general formula for principal value of tan−1(cotθ)=2π−θ if and only if (0,π) . The principal value of θ for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is (−2π,2π). So the principle of θ for inverse tangent function always lies between −2πand 2π.