Solveeit Logo

Question

Question: Find the principal value of each of the following \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \ri...

Find the principal value of each of the following
tan1(13){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)

Explanation

Solution

let us consider the y as given inverse trigonometric function and then we will get the value of tany\tan y and if tany\tan y is negative then the principal value will be θ-\theta . The principal value of tanθ\tan \theta lies between π2-\dfrac{\pi }{2}and π2\dfrac{\pi }{2}

Complete step-by-step answer:
Let y= tan1(13){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
tany=13\tan y=-\dfrac{1}{\sqrt{3}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since 13-\dfrac{1}{\sqrt{3}}is negative, principal value is θ-\theta
We know the principal value of tan1{{\tan }^{-1}}is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)
Hence the principal value of tan1(13){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)is
=tan1(tanπ6)={{\tan }^{-1}}\left( -\tan \dfrac{\pi }{6} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know that tan(θ)=tanθ\tan \left( -\theta \right)=-\tan \theta
Therefore,
=tan1(tan(π6))={{\tan }^{-1}}\left( \tan \left( -\dfrac{\pi }{6} \right) \right). . . . . . . . . . . . . . . . . . . . . (4)
=π6=-\dfrac{\pi }{6}

Note: The general formula for principal value of tan1(cotθ)=π2θ{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta if and only if (0,π)\left( 0,\pi \right) . The principal value of θ\theta for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). So the principle of θ\theta for inverse tangent function always lies between π2-\dfrac{\pi }{2}and π2\dfrac{\pi }{2}.