Solveeit Logo

Question

Question: Find the principal value of \({{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfra...

Find the principal value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)?

Explanation

Solution

We start solving the problem by assigning a variable ‘x’ to the value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right). We first find the principal values of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right) and sin1(12){{\sin }^{-1}}\left( -\dfrac{1}{2} \right) by following the principal range of cos1(x){{\cos }^{-1}}\left( x \right) and sin1(x){{\sin }^{-1}}\left( x \right). After finding the values, we use them and calculate to get the required value ‘x’.

Complete step by step answer:
According to the problem, we need to find the principal value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right).
Let us assume the principal value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) be ’x’.
So, we have got x=cos1(12)2sin1(12)x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right).
Let us find principal values of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right) and sin1(12){{\sin }^{-1}}\left( -\dfrac{1}{2} \right) first.
We know that the principal range of cos1x{{\cos }^{-1}}x is [0,π]\left[ 0,\pi \right]. We know that the value of cos(π3)\cos \left( \dfrac{\pi }{3} \right) is 12\dfrac{1}{2}.
So, we have got the principal value cos1(12)=cos1(cos(π3)){{\cos }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right) ---(1).
We know that cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x, if the value of ‘x’ lies in the interval [0,π]\left[ 0,\pi \right]. We use this result in equation (1).
So, we have got the principal value cos1(12)=π3{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3} ---(2).
Now, we find the principal value of sin1(12){{\sin }^{-1}}\left( -\dfrac{1}{2} \right).
We know that the principal range of sin1x{{\sin }^{-1}}x is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]. We know that the value of sin(π6)\sin \left( \dfrac{-\pi }{6} \right) is 12\dfrac{-1}{2}.
So, we have got the principal value sin1(12)=sin1(sin(π6)){{\sin }^{-1}}\left( \dfrac{-1}{2} \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{-\pi }{6} \right) \right) ---(3).
We know that sin1(sinx)=x{{\sin }^{-1}}\left( \sin x \right)=x, if the value of ‘x’ lies in the interval [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]. We use this result in equation (3).
So, we have got the principal value sin1(12)=π6{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6} ---(4).
Let us now find the principal value of ‘x’.
We have got the principal value of x=cos1(12)2sin1(12)x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right).
From equations (3) and (4), we have got the principal value of x=π32(π6)x=\dfrac{\pi }{3}-2\left( \dfrac{-\pi }{6} \right).
We have got the principal value of x=π3(π3)x=\dfrac{\pi }{3}-\left( \dfrac{-\pi }{3} \right).
We have got the principal value of x=π3+π3x=\dfrac{\pi }{3}+\dfrac{\pi }{3}.
We have got the principal value of x=2π3x=\dfrac{2\pi }{3}.
We have found the principal value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) as 2π3\dfrac{2\pi }{3}.

∴ The principal value of cos1(12)2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) is 2π3\dfrac{2\pi }{3}.

Note: We should not confuse the principal range of cos1(x){{\cos }^{-1}}\left( x \right) with [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] as the values of cosx\cos x lies in [0,1]\left[ 0,1 \right] within that interval. If the principal value is not mentioned in the problem, we could have got more than one solution. Similarly, we can get problems finding the solution set for x (the assigned value in the beginning).