Solveeit Logo

Question

Question: Find the principal value of \({{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\)....

Find the principal value of cos1(32){{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right).

Explanation

Solution

Hint: We will be using the concept of inverse trigonometric functions to solve the problem. We will first write 32\dfrac{\sqrt{3}}{2} as cosθ\cos \theta then we will use the fact that cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x for x[0,π]x\in \left[ 0,\pi \right].

Complete step-by-step answer:

Now, we have to find the value of cos1(32){{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right).
Now, we know that the value of cos(π6)=32.........(1)\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}.........\left( 1 \right)
We have taken 32=cos(π6)\dfrac{\sqrt{3}}{2}=\cos \left( \dfrac{\pi }{6} \right) as in the view of the principal value convention, x is confined to be in [0,π]\left[ 0,\pi \right].
Now, we know that the graph of cos1(cosx){{\cos }^{-1}}\left( \cos x \right) is,

Now, we have to find the value ofcos1(32){{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right).
We will use the equation (1) to substitute the value of 32\dfrac{\sqrt{3}}{2}. So, we have,
cos1(cos(π6)){{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)
Also, we know that cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x for x[0,π]x\in \left[ 0,\pi \right]. So, we have,
cos1(32)=π6{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}

Note: To solve these type of question it is important to note that we have used a fact that cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x only forx[0,π]x\in \left[ 0,\pi \right]. For another value of x the graph of cos1(cosx){{\cos }^{-1}}\left( \cos x \right) must be used to find the value.