Question
Question: Find the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]...
Find the principal value of cos−1(2−3)
Solution
Hint: let us consider the y as given inverse trigonometric function and then we will get the value of cosy and if cosy is negative then the principal value will be π−θ. The principal value of cosθ lies between 0 and π
Complete step-by-step answer:
Let y=cos−1(2−3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
⇒cosy=2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since 2−3is negative, principal value of θ is π−θ
⇒cosy=2−3=cos(π−6π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of cos−1is [0,π]
Hence the principal value of cos−1(2−3)is
π−6π=66π−π=65π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The general formula for principal value of cos−1(sinθ)=2π−θ if and only if θ∈[−2π,2π]. The principal value of θ for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is [0,π]. So the principle of θ for inverse cosine function always lies between 0 and π.