Solveeit Logo

Question

Question: Find the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]...

Find the principal value of cos1(32){{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)

Explanation

Solution

Hint: let us consider the y as given inverse trigonometric function and then we will get the value of cosy\cos y and if cosy\cos y is negative then the principal value will be πθ\pi -\theta . The principal value of cosθ\cos \theta lies between 0 and π\pi

Complete step-by-step answer:
Let y=cos1(32){{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
cosy=32\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since 32\dfrac{-\sqrt{3}}{2}is negative, principal value of θ\theta is πθ\pi -\theta
cosy=32=cos(ππ6)\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}=\cos \left( \pi -\dfrac{\pi }{6} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of cos1{{\cos }^{-1}}is [0,π]\left[ 0,\pi \right]
Hence the principal value of cos1(32){{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)is
ππ6=6ππ6=5π6\pi -\dfrac{\pi }{6}=\dfrac{6\pi -\pi }{6}=\dfrac{5\pi }{6}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

Note: The general formula for principal value of cos1(sinθ)=π2θ{{\cos }^{-1}}\left( \sin \theta \right)=\dfrac{\pi }{2}-\theta if and only if θ[π2,π2]\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]. The principal value of θ\theta for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is [0,π]\left[ 0,\pi \right]. So the principle of θ\theta for inverse cosine function always lies between 0 and π\pi .