Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the principal value of cos-1(12)\bigg(-\frac{1}{2}\bigg)

Answer

Let cos-1(12)=y\bigg(-\frac{1}{2}\bigg)=y
Then cosy=12=cos(π3)=cos(ππ3)=cos(2π3)cos \,y = -\frac{1}{2}=-cos\bigg(\frac {\pi}{3}\bigg)=cos\bigg(\pi-\frac{\pi}{3}\bigg)=cos\bigg(\frac{2\pi}{3}\bigg)
We know that the range of the principal value branch of
cos-1 is [0,π]andcos(2π3)=12.\bigg[0,\pi\bigg] and \, cos \bigg(\frac{2\pi}{3}\bigg)=-\frac{1}{2}.
Therefore, the principal value of cos-1 (12)\bigg(-\frac{1}{2}\bigg) is 2π3\frac {2\pi}{3}