Solveeit Logo

Question

Question: Find the principal argument of the complex number \[1 + \sqrt 2 + i\]. Choose the correct option. ...

Find the principal argument of the complex number 1+2+i1 + \sqrt 2 + i. Choose the correct option.
A. π3\dfrac{\pi }{3}
B. π6\dfrac{\pi }{6}
C. π8\dfrac{\pi }{8}
D. π4\dfrac{\pi }{4}

Explanation

Solution

The complex number zz is of the form z=x+iyz = x + iy where xx represents the real part and yy represents the imaginary part. In the given question, z=1+2+iz = 1 + \sqrt 2 + i has both real and imaginary parts that is x=1+2x = 1 + \sqrt 2 is the real part of the complex number and y=1y = 1 is the imaginary part of the given complex number. Use the formula of finding the principal argument of the complex number to find the argument of zz. Use the Pythagoras theorem to find the value of θ\theta .

Complete step by step solution:
Consider the given complex number z=x+iyz = x + iy which has both the parts in it. The real part is x=1+2x = 1 + \sqrt 2 and the imaginary part is y=1y = 1.
We know that, for a complex number z=x+iyz = x + iy, the principal argument of the complex number is given by arg(z)=tan1(yx)\arg \left( z \right) = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right).
Next, we will substitute the values in the formula of principal argument of zz.
Thus, we get,
arg(1+2+i)=tan1(11+2)\arg \left( {1 + \sqrt 2 + i} \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right)
Now, we will find the value of tan1(11+2){\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) by multiplying the numerator and denominator by 121 - \sqrt 2
Thus, we get,
tan1(11+2×1212)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }}} \right)
Next, we will use the property (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} in the denominator.
Hence, we get,
tan1(1212)=tan1(21)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 - \sqrt 2 }}{{1 - 2}}} \right) = {\tan ^{ - 1}}\left( {\sqrt 2 - 1} \right)
Now, we will find the value of tan1(21)=θ{\tan ^{ - 1}}\left( {\sqrt 2 - 1} \right) = \theta
tan(θ)=21\Rightarrow \tan \left( \theta \right) = \sqrt 2 - 1
Consider the figure,

From this we have, AB=21AB = \sqrt 2 - 1 and BC=1BC = 1 and we have to find the value of AC=?AC = ?.
Using the Pythagoras theorem, we know that for a ΔABC\Delta ABC, (AC)2=(AB)2+(BC)2{\left( {AC} \right)^2} = {\left( {AB} \right)^2} + {\left( {BC} \right)^2}
Thus, we get,

(AC)2=(21)2+(1)2 (AC)2=2+122+1 (AC)2=422 (AC)=422 AC=4(1224) AC=2122 AC=2112 AC=2212  \Rightarrow {\left( {AC} \right)^2} = {\left( {\sqrt 2 - 1} \right)^2} + {\left( 1 \right)^2} \\\ \Rightarrow {\left( {AC} \right)^2} = 2 + 1 - 2\sqrt 2 + 1 \\\ \Rightarrow {\left( {AC} \right)^2} = 4 - 2\sqrt 2 \\\ \Rightarrow \left( {AC} \right) = \sqrt {4 - 2\sqrt 2 } \\\ \Rightarrow AC = \sqrt {4\left( {1 - \dfrac{{2\sqrt 2 }}{4}} \right)} \\\ \Rightarrow AC = 2\sqrt {1 - \dfrac{{\sqrt 2 }}{2}} \\\ \Rightarrow AC = 2\sqrt {1 - \dfrac{1}{{\sqrt 2 }}} \\\ \Rightarrow AC = 2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} \\\

Now, we have AB=21AB = \sqrt 2 - 1, BC=1BC = 1 and AC=2212AC = 2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}}
Next, we will find the value of sinθ=ABAC\sin \theta = \dfrac{{AB}}{{AC}} and cosθ=BCAC\cos \theta = \dfrac{{BC}}{{AC}}
Thus, we have,
sinθ=212212\Rightarrow \sin \theta = \dfrac{{\sqrt 2 - 1}}{{2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} }} and cosθ=12212\cos \theta = \dfrac{1}{{2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} }}
Next, we will evaluate the value of sinθcosθ\sin \theta \cos \theta

sinθcosθ=212212×12212 =214(212) =24 =122  \sin \theta \cos \theta = \dfrac{{\sqrt 2 - 1}}{{2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} }} \times \dfrac{1}{{2\sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} }} \\\ = \dfrac{{\sqrt 2 - 1}}{{4\left( {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}} \right)}} \\\ = \dfrac{{\sqrt 2 }}{4} \\\ = \dfrac{1}{{2\sqrt 2 }} \\\

Now, multiply 2 on both the sides, we have,

2sinθcosθ=222 sin2θ=12 2θ=π4 θ=π8  2\sin \theta \cos \theta = \dfrac{2}{{2\sqrt 2 }} \\\ \sin 2\theta = \dfrac{1}{{\sqrt 2 }} \\\ 2\theta = \dfrac{\pi }{4} \\\ \theta = \dfrac{\pi }{8} \\\

Thus, the principal argument arg(1+2+i)=π8\arg \left( {1 + \sqrt 2 + i} \right) = \dfrac{\pi }{8}.
The option is incorrect as the principal argument is equal to π8\dfrac{\pi }{8}.
Note: The trigonometric identity 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta is used to simplify the expression. Remember the trigonometric values as here we have used
sinA=12\sin A = \dfrac{1}{{\sqrt 2 }} giving A=π4A = \dfrac{\pi }{4} . We have used the Pythagoras theorem in evaluating the value of θ\theta by finding the value of the side of the right-angled triangle.