Solveeit Logo

Question

Question: Find the possible values of x if \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\]....

Find the possible values of x if cosx.cos2x.cos3x=14\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}.

Explanation

Solution

Hint: Multiply by 4 in LHS and RHS of the equation cosx.cos2x.cos3x=14\cos x.\cos 2x.\cos 3x=\dfrac{1}{4} . Now, transform the equation using the formula 2.cosA.cosB=cos(A+B)+cos(AB)2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) . Consider A as x and B as 3x. Then, replace 2cos22x12{{\cos }^{2}}2x-1 by cos4x\cos 4x. We know the general solution of cosθ=0\cos \theta =0 is θ=(2n+1)π2\theta =(2n+1)\dfrac{\pi }{2} and cosα=12\cos \alpha =-\dfrac{1}{2} is α=2nπ±2π3\alpha =2n\pi \pm \dfrac{2\pi }{3}. Solve it further using these general solutions.

Complete step-by-step solution -
According to the question we have the equation, cosx.cos2x.cos3x=14\cos x.\cos 2x.\cos 3x=\dfrac{1}{4} …………….(1)
Now, multiplying by 4 in LHS and RHS of the equation (1), we get
cosx.cos2x.cos3x=14\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}
4.cosx.cos2x.cos3x=1\Rightarrow 4.\cos x.\cos 2x.\cos 3x=1
2.cosx.cos3x.(2cos2x)=1\Rightarrow 2.\cos x.\cos 3x.(2\cos 2x)=1 ……………………..(2)
We have to simplify equation (2).
We know the formula, 2.cosA.cosB=cos(A+B)+cos(AB)2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) …………(3)
Replacing A by x and B by 3x in equation (3), we get
2.cosx.cos3x=cos(x+3x)+cos(x3x)2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( x-3x \right)
2.cosx.cos3x=cos(x+3x)+cos(2x)\Rightarrow 2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( -2x \right) …………………(4)
We know that, cos(x)=cosx\cos (-x)=\cos x. Replacing x by 2x, we get
cos(2x)=cos2x\cos (-2x)=\cos 2x ……………….(5)
Now, using (5), transforming equation (4),
2.cosx.cos3x=cos(4x)+cos(2x)\Rightarrow 2.\cos x.\cos 3x=\cos \left( 4x \right)+\cos \left( 2x \right) ……………….(6)
Now, using (6), transforming equation (2),
cos(4x)+cos(2x)2cos2x=1\\{\cos \left( 4x \right)+\cos \left( 2x \right)\\}2\cos 2x=1
2cos4x.cos2x+2cos22x=1\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x=1
2cos4x.cos2x+2cos22x1=0\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x-1=0 ………………….(7)
We know the formula, 2cos2x1=cos2x2{{\cos }^{2}}x-1=\cos 2x .
Now, replacing x by 2x in the above formula, we get
2cos22x1=cos4x2{{\cos }^{2}}2x-1=\cos 4x ……………..(8)
Now, using (8), transforming equation (7), we get

& \Rightarrow 2\cos 4x.\cos 2x+\cos 4x=0 \\\ & \Rightarrow \cos 4x(2\cos 2x+1)=0 \\\ \end{aligned}$$ $$\cos 4x=0$$ or $$2\cos 2x+1=0$$ . We know that the general solution of $$\cos \theta =0$$ is $$\theta =(2n+1)\dfrac{\pi }{2}$$ . $$\cos 4x=0$$ Now, using the general solution of $$\cos \theta =0$$ , we get $$\begin{aligned} & \Rightarrow 4x=(2n+1)\dfrac{\pi }{2} \\\ & \Rightarrow x=(2n+1)\dfrac{\pi }{8} \\\ \end{aligned}$$ $$\begin{aligned} & 2\cos 2x+1=0 \\\ & \Rightarrow 2\cos 2x=-1 \\\ & \Rightarrow \cos 2x=\dfrac{-1}{2} \\\ \end{aligned}$$ We know that, $$\cos \left( \pi -\dfrac{\pi }{3} \right)=\cos \left( \dfrac{2\pi }{3} \right)=-\dfrac{1}{2}$$ We have to find the general solution of $$\cos \theta =-\dfrac{1}{2}$$ . $$\begin{aligned} & \cos \theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\\ & \Rightarrow cos\theta =\cos \left( \dfrac{2\pi }{3} \right) \\\ \end{aligned}$$ $$\Rightarrow \theta =2n\pi \pm \dfrac{2\pi }{3}$$ Now, we have the general solution of $$\cos \theta =-\dfrac{1}{2}$$ equal to $$\theta =2n\pi \pm \dfrac{2\pi }{3}$$ . Now, using the general solution of $$\cos \theta =-\dfrac{1}{2}$$ , we get $$\begin{aligned} & \Rightarrow 2\cos 2x=-1 \\\ & \Rightarrow \cos 2x=\dfrac{-1}{2} \\\ \end{aligned}$$ Replacing 2x by $$\theta $$ in the above equation, we get $$\cos \theta =-\dfrac{1}{2}$$ we have the general solution of $$\cos \theta =-\dfrac{1}{2}$$ equal to $$\theta =2n\pi \pm \dfrac{2\pi }{3}$$……..(9) Now, replacing $$\theta $$ by 2x in equation (9), we get $$\begin{aligned} & \Rightarrow 2x=2n\pi \pm \dfrac{2\pi }{3} \\\ & \Rightarrow x=n\pi \pm \dfrac{\pi }{3} \\\ \end{aligned}$$ So, $$x=n\pi \pm \dfrac{\pi }{3}$$ or $$x=(2n+1)\dfrac{\pi }{8}$$. Note: In this question, one can consider 2x as A and 3x as B and then transform the equation $$4\cos x.\cos 2x.\cos 3x=1$$ using the formula $$2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$$ . If we do so, then we will get one 5x term due to which our equation will become complex to solve. So, this approach is wrong for this question. Therefore, we have to consider x as A and 3x as B and then transform $$4\cos x.\cos 2x.\cos 3x=1$$ the equation using the formula $$2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$$ .