Question
Question: Find the possible values of x if \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\]....
Find the possible values of x if cosx.cos2x.cos3x=41.
Solution
Hint: Multiply by 4 in LHS and RHS of the equation cosx.cos2x.cos3x=41 . Now, transform the equation using the formula 2.cosA.cosB=cos(A+B)+cos(A−B) . Consider A as x and B as 3x. Then, replace 2cos22x−1 by cos4x. We know the general solution of cosθ=0 is θ=(2n+1)2π and cosα=−21 is α=2nπ±32π. Solve it further using these general solutions.
Complete step-by-step solution -
According to the question we have the equation, cosx.cos2x.cos3x=41 …………….(1)
Now, multiplying by 4 in LHS and RHS of the equation (1), we get
cosx.cos2x.cos3x=41
⇒4.cosx.cos2x.cos3x=1
⇒2.cosx.cos3x.(2cos2x)=1 ……………………..(2)
We have to simplify equation (2).
We know the formula, 2.cosA.cosB=cos(A+B)+cos(A−B) …………(3)
Replacing A by x and B by 3x in equation (3), we get
2.cosx.cos3x=cos(x+3x)+cos(x−3x)
⇒2.cosx.cos3x=cos(x+3x)+cos(−2x) …………………(4)
We know that, cos(−x)=cosx. Replacing x by 2x, we get
cos(−2x)=cos2x ……………….(5)
Now, using (5), transforming equation (4),
⇒2.cosx.cos3x=cos(4x)+cos(2x) ……………….(6)
Now, using (6), transforming equation (2),
cos(4x)+cos(2x)2cos2x=1
⇒2cos4x.cos2x+2cos22x=1
⇒2cos4x.cos2x+2cos22x−1=0 ………………….(7)
We know the formula, 2cos2x−1=cos2x .
Now, replacing x by 2x in the above formula, we get
2cos22x−1=cos4x ……………..(8)
Now, using (8), transforming equation (7), we get