Solveeit Logo

Question

Question: Find the possible value of \[\cos x\], if \[\cot x + \cos ecx = 5\]....

Find the possible value of cosx\cos x, if cotx+cosecx=5\cot x + \cos ecx = 5.

Explanation

Solution

Here, we are required to find the possible value of cosx\cos x. We will write cotx\cot x and cosecx\cos ecx in terms of sinx\sin x and cosx\cos x. Then using various properties we will simplify the equation. We will then obtain the equation in quadratic form. We will simplify the equation using the factorization method and find the required answer.

Formulas Used:
We will use the following formulas:

  1. (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
  2. (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)
  3. (cosec2xcot2x)=1\left( {\cos e{c^2}x - {{\cot }^2}x} \right) = 1
  4. sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1

Complete step by step solution:
According to the question,
cotx+cosecx=5\cot x + \cos ecx = 5…………………………(1)\left( 1 \right)
As we know, cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} and cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}}
Therefore, substituting cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} and cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}} in equation (1), we get
cosxsinx+1sinx=5\Rightarrow \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} = 5
Since the denominator in the LHS is same, therefore, adding the numerators, we get
cosx+1sinx=5\dfrac{{\cos x + 1}}{{\sin x}} = 5……………………………..(2)\left( 2 \right)
On cross multiplication, we get
cosx+1=5sinx\Rightarrow \cos x + 1 = 5\sin x
Now, squaring both sides, we get
(cosx+1)2=(5sinx)2\Rightarrow {\left( {\cos x + 1} \right)^2} = {\left( {5\sin x} \right)^2}
We will use the formula(a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab to simplify LHS of the above equation. Therefore, we get
cos2x+2cosx+1=25sin2x\Rightarrow {\cos ^2}x + 2\cos x + 1 = 25{\sin ^2}x…………………………………..(3)\left( 3 \right)
Now, we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, hence,
sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x
Substituting sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x in equation(3)\left( 3 \right) we get,
cos2x+2cosx+1=25(1cos2x)\Rightarrow {\cos ^2}x + 2\cos x + 1 = 25\left( {1 - {{\cos }^2}x} \right)
cos2x+2cosx+1=2525cos2x\Rightarrow {\cos ^2}x + 2\cos x + 1 = 25 - 25{\cos ^2}x
Subtracting 2525cos2x25 - 25{\cos ^2}x from both sides, we get
Rearranging the terms, we get
26cos2x+2cosx24=0\Rightarrow 26{\cos ^2}x + 2\cos x - 24 = 0
Dividing by 2 on both the sides, we get
13cos2x+cosx12=0\Rightarrow 13{\cos ^2}x + \cos x - 12 = 0
The above equation is in the form of a quadratic equation.
Factoring the equation, we get
13cos2x+13cosx12cosx12=0\Rightarrow 13{\cos ^2}x + 13\cos x - 12\cos x - 12 = 0
Factoring out common term, we get
13cosx(cosx+1)12(cosx+1)=0\Rightarrow 13\cos x\left( {\cos x + 1} \right) - 12\left( {\cos x + 1} \right) = 0
(cosx+1)(13cosx12)=0\Rightarrow \left( {\cos x + 1} \right)\left( {13\cos x - 12} \right) = 0
Using zero product property, we get
cosx+1=0 cosx=1\begin{array}{l} \Rightarrow \cos x + 1 = 0\\\ \Rightarrow \cos x = - 1\end{array}
Or
(13cosx12)=0 cosx=1213\begin{array}{l} \Rightarrow \left( {13\cos x - 12} \right) = 0\\\ \Rightarrow \cos x = \dfrac{{12}}{{13}}\end{array}
Now, we will reject the value cosx=1\cos x = - 1 because from equation (2)\left( 2 \right),
cosx+1sinx=5\dfrac{{\cos x + 1}}{{\sin x}} = 5
Hence, if cosx=1\cos x = - 1 then, LHS will become 0 which will not be equal to RHS.
Therefore, we will reject this value.

Hence, if cotx+cosecx=5\cot x + \cos ecx = 5, then the possible value of cosx\cos x is 1213\dfrac{{12}}{{13}}.

Note:
This question can be solved in another way using the formula:
(cosec2xcot2x)=1\left( {\cos e{c^2}x - {{\cot }^2}x} \right) = 1……………………………………..(5)\left( 5 \right)
Now, it is given that cotx+cosecx=5\cot x + \cos ecx = 5………………..(1)\left( 1 \right)
Using the formula (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) in the equation (5)\left( 5 \right), we get
(cosecxcotx)(cosecx+cotx)=1\Rightarrow \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right) = 1
Substituting cotx+cosecx=5\cot x + \cos ecx = 5 in the above equation, we get
(cosecxcotx)(5)=1\Rightarrow \left( {\cos ecx - \cot x} \right)\left( 5 \right) = 1
(cosecxcotx)=15\Rightarrow \left( {\cos ecx - \cot x} \right) = \dfrac{1}{5}……………………….(6)\left( 6 \right)
Adding (1)\left( 1 \right) and (6)\left( 6 \right), we get
cotx+cosecx+cosecxcotx=15+5=265\cot x + \cos ecx + \cos ecx - \cot x = \dfrac{1}{5} + 5 = \dfrac{{26}}{5}
2cosecx=265\Rightarrow 2\cos ecx = \dfrac{{26}}{5}
Dividing both sides by 2, we get
cosecx=135\Rightarrow \cos ecx = \dfrac{{13}}{5}
Now we know sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}}, so
sinx=513\Rightarrow \sin x = \dfrac{5}{{13}}
Now, we have shown above that sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x.
Taking square root on both sides of sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x, we get
sinx=1cos2x\sin x = \sqrt {1 - {{\cos }^2}x}
Substituting sinx=1cos2x\sin x = \sqrt {1 - {{\cos }^2}x} in sinx=513\sin x = \dfrac{5}{{13}}, we get
513=1cos2x\Rightarrow \dfrac{5}{{13}} = \sqrt {1 - {{\cos }^2}x}
Squaring both sides, we get
25169=1cos2x\Rightarrow \dfrac{{25}}{{169}} = 1 - {\cos ^2}x
cos2x=125169=16925169\Rightarrow {\cos ^2}x = 1 - \dfrac{{25}}{{169}} = \dfrac{{169 - 25}}{{169}}
Simplifying the expression, we get
cos2x=144169\Rightarrow {\cos ^2}x = \dfrac{{144}}{{169}}
Since, we know that 144 is the square of 12.
cos2x=(1213)2\Rightarrow {\cos ^2}x = {\left( {\dfrac{{12}}{{13}}} \right)^2}
cosx=(1213)\therefore \cos x=\left( \dfrac{12}{13} \right)
Therefore, if cotx+cosecx=5\cot x + \cos ecx = 5, then the possible value of cosx\cos x is 1213\dfrac{{12}}{{13}}.
Hence, this is the required answer.