Solveeit Logo

Question

Question: Find the positive value of \(\lambda \) for which the coefficient of \({{x}^{2}}\) in the expression...

Find the positive value of λ\lambda for which the coefficient of x2{{x}^{2}} in the expression x2(x+λx2)10{{x}^{2}}{{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}} is 720720:
A. 5 B. 4 C. 22 D. 3 \begin{aligned} & \text{A}\text{. }\sqrt{5} \\\ & \text{B}\text{. 4} \\\ & \text{C}\text{. 2}\sqrt{2} \\\ & \text{D}\text{. 3} \\\ \end{aligned}

Explanation

Solution

To solve this question we will use binomial theorem to expand the given expression. The general formula used in the expansion of binomial raised to the power nn, (x+a)n{{\left( x+a \right)}^{n}} is given as (x+a)n=r=0n(nCr)xnrar{{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right){{x}^{n-r}}{{a}^{r}}}. In the expansion we put the coefficient of x2{{x}^{2}} equal to 720720 and find the value of λ\lambda .

Complete step by step answer:
We have been given the expression x2(x+λx2)10{{x}^{2}}{{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}.
We have to find the positive value of λ\lambda .
Now, we will use the binomial theorem to expand the given expression x2(x+λx2)10{{x}^{2}}{{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}.
We know that binomial theorem states that for any positive integer nn, the nth{{n}^{th}} power of the sum of two real numbers xx and aa may be expressed as
(x+a)n=r=0n(nCr)xnrar{{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right){{x}^{n-r}}{{a}^{r}}}
Now, when we compare the general term with the given expression, we have
x=x a=λx2 n=10 \begin{aligned} & x=\sqrt{x} \\\ & a=\dfrac{\lambda }{{{x}^{2}}} \\\ & n=10 \\\ \end{aligned}
So, (x+λx2)10=r=010(10Cr)(x)10r(λx2)r{{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}=\sum\limits_{r=0}^{10}{\left( {}^{10}{{C}_{r}} \right){{\left( \sqrt{x} \right)}^{10-r}}{{\left( \dfrac{\lambda }{{{x}^{2}}} \right)}^{r}}}
We know that we can write x=x12\sqrt{x}={{x}^{\dfrac{1}{2}}} , we get
(x+λx2)10=r=010(10Cr)(x)10r2(λrx2r){{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}=\sum\limits_{r=0}^{10}{\left( {}^{10}{{C}_{r}} \right){{\left( x \right)}^{\dfrac{10-r}{2}}}\left( \dfrac{{{\lambda }^{r}}}{{{x}^{2r}}} \right)}
Now, we know that xmxn=xmn\dfrac{{{x}^{m}}}{{{x}^{n}}}={{x}^{m-n}}
So, we get
(x+λx2)10=r=010(10Cr)(x)(10r22r)λr{{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}=\sum\limits_{r=0}^{10}{\left( {}^{10}{{C}_{r}} \right){{\left( x \right)}^{\left( \dfrac{10-r}{2}-2r \right)}}{{\lambda }^{r}}}
(x+λx2)10=r=010(10Cr)(x)(10r4r2)λr (x+λx2)10=r=010(10Cr)(x)(105r2)λr \begin{aligned} & {{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}=\sum\limits_{r=0}^{10}{\left( {}^{10}{{C}_{r}} \right){{\left( x \right)}^{\left( \dfrac{10-r-4r}{2} \right)}}{{\lambda }^{r}}} \\\ & {{\left( \sqrt{x}+\dfrac{\lambda }{{{x}^{2}}} \right)}^{10}}=\sum\limits_{r=0}^{10}{\left( {}^{10}{{C}_{r}} \right){{\left( x \right)}^{\left( \dfrac{10-5r}{2} \right)}}{{\lambda }^{r}}} \\\ \end{aligned}
Now, for the coefficient of x2{{x}^{2}} in the above expression the value of (105r2)\left( \dfrac{10-5r}{2} \right) but we have x2x^2 in multiplication so value of 105r2=0\dfrac{10-5r}{2}=0
(105r2)=0 105r=0 5r=10 r=105 r=2 \begin{aligned} & \Rightarrow \left( \dfrac{10-5r}{2} \right)=0 \\\ & \Rightarrow 10-5r=0 \\\ & \Rightarrow 5r=10 \\\ & \Rightarrow r=\dfrac{10}{5} \\\ & r=2 \\\ \end{aligned}
Now, we have been given that the value of coefficient of x2{{x}^{2}} is 720720.
So, when we compare the coefficient of x2{{x}^{2}} we have
(10Cr)λr=720\left( {}^{10}{{C}_{r}} \right){{\lambda }^{r}}=720
Put r=2r=2, we get
(10C2)λ2=720\left( {}^{10}{{C}_{2}} \right){{\lambda }^{2}}=720
Now, we know that nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
So, we have

& \dfrac{10!}{2!\left( 10-2 \right)!}{{\lambda }^{2}}=720 \\\ & \dfrac{10\times 9\times 8!}{2\times 1\left( 8 \right)!}{{\lambda }^{2}}=720 \\\ & \dfrac{10\times 9}{2}{{\lambda }^{2}}=720 \\\ & \dfrac{90}{2}{{\lambda }^{2}}=720 \\\ & 45{{\lambda }^{2}}=720 \\\ & {{\lambda }^{2}}=\dfrac{720}{45} \\\ & {{\lambda }^{2}}=16 \\\ & \lambda =\pm 4 \\\ \end{aligned}$$ As we have asked to find the positive value of $\lambda $, so we take $\lambda =4$. **So, the correct answer is “Option B”.** **Note:** If binomial theorem were not there, then it would be a very complex and time-consuming task to calculate the binomial terms raised to the power more than $5$. In this question we only need the coefficient of ${{x}^{2}}$ that’s why we can’t expand the whole expression with all coefficients. Full expansion of the given expression is not needed in this question.