Solveeit Logo

Question

Question: Find the position vectors of a point R which divides the line joining two points P and Q whose posit...

Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are 2a+b2\overrightarrow{a}+\overrightarrow{b} and a3b\overrightarrow{a}-3\overrightarrow{b} respectively, externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.

Explanation

Solution

Hint:First of all, draw a line segment PQ in which R is dividing externally in the ratio 1:2. Now use the formula, m1(P2)m2(P1)m1m2\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}} to find the position vector of R where m1{m}_1 and m2{{m}_2} are ratio which R divides externally. Now, find the midpoint of RQ by using the formula, P1+P22\dfrac{{{P}_{1}}+{{P}_{2}}}{2} and verify the given result.

Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are 2a+b2\overrightarrow{a}+\overrightarrow{b} and a3b\overrightarrow{a}-3\overrightarrow{b} respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.

Here, we are given that position vectors of P and Q are 2a+b2\overrightarrow{a}+\overrightarrow{b} and a3b\overrightarrow{a}-3\overrightarrow{b} respectively. We know that the position vector of any point A is given by OA\overrightarrow{OA}. So, we get,
OP=2a+b\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}
OQ=a3b\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
OA=m1(P2)m2(P1)m1m2\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}
From the diagram, we can see that m1=1,m2=2,P1=OP=2a+b{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b} and P2=OQ=a3b{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}
So, we get,
OR=m1(OQ)m2(OP)m1m2\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}
=1(a3b)2(2a+b)12=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}
=a3b4a2b1=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}
=3a5b1=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}
=3a+5b=3\overrightarrow{a}+5\overrightarrow{b}
So, we get the position vector of R as 3a+5b3\overrightarrow{a}+5\overrightarrow{b}.
Now, let us find the midpoint of RQ.

We know that the position vector of the midpoint (say A) of any line segment is given by:
OA=P1+P22\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}
Here, from the above diagram, we can see that,
P1=OR=3a+5b\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}
P2=OQ=a3b\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}
So, we get,
OM=OR+OQ2\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}
OM=3a+5b+a3b2\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}
OM=4a+2b2\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}
OM=2a+b\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}
This is equal to the position vector of P that is OP=2a+b\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}.
So, we have proved that the midpoint of the line segment RQ is point P.

Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of P1{{P}_{1}} and P2{{P}_{2}} or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, m1(P2)m2(P1)m1m2\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}} while for internal division, use m1(P2)+m2(P1)m1+m2\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}.