Solveeit Logo

Question

Question: Find the position vector of the a point lying on the line joining the points whose position vectors ...

Find the position vector of the a point lying on the line joining the points whose position vectors are i^+j^k^\hat{i}+\hat{j}-\hat{k} and i^j^+k^\hat{i}-\hat{j}+\hat{k}. $$$$

Explanation

Solution

We recall the definition of position vectors. We use the fact that the position vector of any point P that lies on the line joining two points A,B whose positions vector are known as a,b\overrightarrow{a},\overrightarrow{b} is given by a+λd\overrightarrow{a}+\lambda \overrightarrow{d} where λ\lambda is any real scalar and d=ba\overrightarrow{d}=\overrightarrow{b}-\overrightarrow{a} is the distance vector.$$$$

Complete step by step answer:
We can represent any point in the space P(x,y,z)P\left( x,y,z \right) as vector with original O as the initial point and P as the final point in terms of orthogonal unit vectors i^\hat{i},j^\hat{j} and k^\hat{k} as OP=p=xi^+yj^+k^\overrightarrow{OP}=\overrightarrow{p}=x\hat{i}+y\hat{j}+\hat{k}. This vector is called position vector, location vector or radius vector. We have the rough figure of the position vector p\overrightarrow{p} below. $$$$

If there are a=(a1i^+a2j^+a3k^),b=(b1i^+b2j^+b3k^)\overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right),\overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) be two position vectors of two points then the position vector of any point on the line joining the two points is given with a real scalar λ\lambda as;

& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{d} \\\ & \Rightarrow \overrightarrow{p}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right) \\\ & \Rightarrow \overrightarrow{p}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda {{b}_{2}}-{{a}_{2}} \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\\ \end{aligned}$$ We are given in the question the position vectors of two points as $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. Let us denote the two points as A and B and the position vectors as $\overrightarrow{a}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.So we have $$\begin{aligned} & \overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=\hat{i}+\hat{j}-\hat{k} \\\ & \overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)=\hat{i}-\hat{j}+\hat{k} \\\ \end{aligned}$$ We compare the respective components and we get; $$\begin{aligned} & \Rightarrow {{a}_{1}}=1,{{a}_{2}}=1,{{a}_{3}}=-1 \\\ & \Rightarrow {{b}_{1}}=1,{{b}_{2}}=-1,{{b}_{3}}=1 \\\ \end{aligned}$$ Let P be any point on the line segment joining A and B.The position vector of P is; $$\begin{aligned} & \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{b}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda \left( {{b}_{2}}-{{a}_{2}} \right) \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\\ & \Rightarrow \overrightarrow{p}=\left( 1+\lambda \cdot 0 \right)\hat{i}+\left( 1+\lambda \left( -2 \right) \right)\hat{j}+\left( -1+\lambda \cdot 2 \right)\hat{k} \\\ & \Rightarrow \overrightarrow{p}=\hat{i}+\left( 1-2\lambda \right)\hat{j}+\left( -1+2\lambda \right)\hat{k} \\\ \end{aligned}$$ **Note:** We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors (vectors with magnitude 1) along $x,y$ and $z$ axes respectively. If we want to find the position vector of midpoint , it is is given by $\dfrac{\overrightarrow{a}+\overrightarrow{b}}{2}$ and the position vector of any point that divides the line segment AB at a ratio $m:n$ is given by $\dfrac{m\overrightarrow{a}+n\overrightarrow{b}}{m+n}$. We note that the position vector of the point system reference is unique.