Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the position vector of point R which divides the line joining two points P and Q whose position vector is (2a\vec a+b\vec b)and(a\vec a-3b\vec b)externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.

Answer

It is given that OP\vec{OP}=2a\vec a+b\vec b, OQ\vec {OQ}=a\vec a-3b\vec b.
It is given that point R divides a line segment joining two points P and Q externally in the ratio 1:2.Then, on using the section formula, we get:
OR\vec{OR}=2(2a\vec a+b\vec b)-(a\vec a-3b\vec b)/2-1

=4a+2ba+3b1=3a+5b\frac{4\vec a+2 \vec b - \vec a+3\vec b }{1}=3\vec a+5\vec b
Therefore, the position vector of point R is 3a\vec a+5b\vec b
Position vector of the mid-point of RQ=OQ\vec{OQ}+OR2\frac{\vec{OR}}{2}
=(a3b)+(3a+5b)2\frac{(\vec a-3\vec b)+(3\vec a+5\vec b)}{2}
=2a+b2\vec a+\vec b
=OP\vec{OP}
Hence, P is the mid-point of the line segment RQ.