Solveeit Logo

Question

Question: Find the polar coordinates where the Cartesian coordinates are \[\] (i)\(\left( \sqrt{2},\sqrt{2} ...

Find the polar coordinates where the Cartesian coordinates are $$$$
(i)\left( \sqrt{2},\sqrt{2} \right)$$$$$ (ii)\left( 0,\dfrac{1}{2} \right) (iii)$\left( \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} \right)
(iv)\left( \dfrac{3}{2},\dfrac{3\sqrt{3}}{2} \right)$$$$$ (v) \left( -3,0 \right) (v) $\left( -\sqrt{2},\sqrt{2} \right)

Explanation

Solution

We recall the definitions of the polar coordinates (r,θ)\left( r,\theta \right)and Cartesian coordinates (x,y)\left( x,y \right). We find rr as the distance between origin and the Cartesian point as r=x2+y2r=\sqrt{{{x}^{2}}+{{y}^{2}}} and θ\theta as the angle the ray joining the origin and the point makes with positive xx-axis θ=atan2θ\theta =\operatorname{atan}2\theta where atan2(y,x)\operatorname{atan}2\left( y,x \right) represents argument inverse tangent function. $$$$

Complete step by step answer:
We know that Cartesian coordinate system the position of the any point on the plane is represented by an ordered pair (x,y)\left( x,y \right) where xxis called abscissa and calculated as the distance of the point from yy-axis and yy is called ordinate and calculated as the distance of the point from xx-axis. If we denote the point as P then (x,y)\left( x,y \right) is Cartesian coordinate of the point P . We also know that in the polar coordinate system every point is represented in the plane with an ordered pair $\left( r,\theta \right)$ where $r$ is the distance from a reference point (conventionally origin) and $\theta $ is the angle from a reference direction (conventionally positive direction of $x-$axis) . The reference point is called the pole and the reference direction is called the polar axis.

We can convert the Cartesian coordinate (x,y)\left( x,y \right) to polar coordinate (r,θ)\left( r,\theta \right) of a point using the following relations

& r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\\ & \theta =\operatorname{atan}2\left( y,x \right) \\\ \end{aligned}$$ The function $\operatorname{atan}2\left( y,x \right)$ called 2-argument inverse tangent is defined as follows; $$\theta =\left\\{ \begin{matrix} {{\tan }^{-1}}\left( \dfrac{y}{x} \right) & \text{if }x>0 \\\ {{\tan }^{-1}}\left( \dfrac{y}{x} \right)+\pi & \text{if }x<0\text{ and }y\ge 0 \\\ {{\tan }^{-1}}\left( \dfrac{y}{x} \right)-\pi & \text{if }x<0\text{ and }y<0 \\\ \dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\\ -\dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\\ \text{undefined} & \text{if }x=0\text{ and }y=0 \\\ \end{matrix} \right.$$ (i) We are given the Cartesian coordinates$\left( \sqrt{2},\sqrt{2} \right)$. So we have $x=\sqrt{2}>0,y=\sqrt{2}>0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\\ & \theta ={{\tan }^{-1}}\dfrac{\sqrt{2}}{\sqrt{2}}={{\tan }^{-1}}1=\dfrac{\pi }{4} \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{\pi }{4} \right)$$$$$ (ii) We are given the Cartesian coordinates$\left( 0,\dfrac{1}{2} \right)$. So we have $x=0,y=\dfrac{1}{2}>0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2} \\\ & \theta =\dfrac{\pi }{2} \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( \dfrac{1}{2},\dfrac{\pi }{2} \right)$$$$$ (iii) We are given the Cartesian coordinates$\left( \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} \right)$. So we have $x=\dfrac{-1}{\sqrt{2}}<0,y=\dfrac{-1}{\sqrt{2}}<0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}}=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=\sqrt{1}=1 \\\ & \theta ={{\tan }^{-1}}\dfrac{\dfrac{-1}{\sqrt{2}}}{\dfrac{-1}{\sqrt{2}}}-\pi ={{\tan }^{-1}}1-\pi =\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\dfrac{-3\pi }{4} \right)$$$$$ (iv) We are given the Cartesian coordinates$\left( \dfrac{3}{2},\dfrac{3\sqrt{3}}{2} \right)$. So we have $x=\dfrac{3}{2}>0,y=\dfrac{3\sqrt{3}}{2}>0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{9}{4}+\dfrac{27}{4}}=\sqrt{\dfrac{36}{4}}=\sqrt{9}=3 \\\ & \theta ={{\tan }^{-1}}\dfrac{\dfrac{3\sqrt{3}}{2}}{\dfrac{3}{2}}={{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3} \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( 3,\dfrac{\pi }{3} \right)$$$$$ (v) We are given the Cartesian coordinates$\left( -3,0 \right)$. So we have $x=-3<0,y=0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( -3 \right)}^{2}}+{{\left( 0 \right)}^{2}}}=\sqrt{9}=3 \\\ & \theta ={{\tan }^{-1}}\dfrac{0}{-3}+\pi ={{\tan }^{-1}}0+\pi =\pi \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\pi \right)$$$$$ (vi) We are given the Cartesian coordinates$\left( -\sqrt{2},-\sqrt{2} \right)$. So we have $x=-\sqrt{2}<0,y=-\sqrt{2}<0$. Then we use conversion formula to have $$\begin{aligned} & r=\sqrt{{{\left( -\sqrt{2} \right)}^{2}}+{{\left( -\sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\\ & \theta ={{\tan }^{-1}}\dfrac{-\sqrt{2}}{-\sqrt{2}}-\pi ={{\tan }^{-1}}1=\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\\ \end{aligned}$$ So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{-3\pi }{4} \right)$$$$$ **Note:** We note that $r$(also called radial coordinate) is always positive and $\theta $(also called angular coordinate) is always measured in radian. The polar coordinate for origin does not exist. We can also convert the angle $\dfrac{-3\pi }{4}$to positive by adding $2\pi $. We can alternatively find $\theta $ with $x$ and $r$ as $\theta ={{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition$y\ge 0,r\ne 0$, $\theta =-{{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition $y<0$ and $\theta $ is undefined if $r=0$.