Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

Find the points of trisection of the segment joining the points A(1,0,6)A( 1,0, -6) and B(5,9,6)B(-5,9,6).

A

(1,3,2)(-1,3,-2), (3,6,2)(-3,6,2)

B

(1,3,2)(1,-3,-2), (3,6,2)(3,-6,2)

C

(1,3,2)(1,3,2), (3,6,2)(3,6,2)

D

(1,3,2)(-1,3,-2), (3,6,2)(-3,-6,2)

Answer

(1,3,2)(-1,3,-2), (3,6,2)(-3,6,2)

Explanation

Solution

Let PP and QQ be the points of trisection of the segment [AB][AB], then PP divides [AB][AB] in the ratio 1:21 : 2 and QQ divides [AB][AB] in the ratio 2:12 :1. P(1×(5)+2×11+2,1×9+2×01+2,1×6+2×(6)1+2)\therefore P \equiv \left(\frac{1\times\left(-5\right)+2\times 1}{1+2}, \frac{1\times 9+2\times 0}{1+2}, \frac{1\times 6+2\times \left(-6\right)}{1+2}\right), i.e., P=(1,3,2)P = \left(-1,3, -2\right) and Q(2×(5)+1×12+1,2×9+1×02+1,2×6+1×(6)2+1)Q \equiv \left(\frac{2\times \left(-5\right)+1\times 1}{2+1}, \frac{2\times 9+1\times 0}{2+1}, \frac{2\times 6+1\times \left(-6\right)}{2+1}\right), i.e., QQ is (3,6,2)\left(-3,6,2\right) Hence, the required points of trisection are P(1,3,2)P\left(-1, 3, -2\right) and Q(3,6,2)Q\left(-3,6, 2\right).