Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find the points of local maxima and local minima respectively for the function f(x)=sin2xxf\left(x\right) = sin\,2x-x, where π2xπ2-\frac{\pi}{2} \le x \le\frac{\pi }{2}

A

π/6-\pi /6, π/6\pi/6

B

π/3\pi /3, π/3-\pi/3

C

π/3-\pi /3, π/3\pi/3

D

π/6\pi /6, π/6-\pi/6

Answer

π/6\pi /6, π/6-\pi/6

Explanation

Solution

We have, f(x)=sin2xxf(x) = sin\, 2x - x f(x)=2cos2x1\Rightarrow f'\left(x\right) = 2\, cos \,2x - 1 For local maximum or minimum, we must have f(x)=0f' \left(x\right) = 0 2cos2x1=0\Rightarrow 2cos \,2x - 1 = 0 cos2x=12\Rightarrow cos\, 2x =\frac{1}{2} 2x=π3\Rightarrow 2x = -\frac{\pi}{3} or, 2x=π32x = \frac{\pi}{3} [π2xπ2π2xπ]\left[\because -\frac{\pi }{2} \le x \le \frac{\pi }{2} \therefore -\pi \le 2x \le \pi\right] =π6\Rightarrow = - \frac{\pi }{6} or, x=π6x = \frac{\pi }{6} Thus, x=π6x = -\frac{\pi }{6} and x=π6x = \frac{\pi }{6} are possible points of local maxima or minima. Now, we test the function at each of these points, We have, f(x)=4sin2xf''\left(x\right) = - 4 \,sin\, 2x At x=π/6x = - \pi/6 : We have, f(π6)=4sin(π3)f''\left(-\frac{\pi }{6}\right) = -4\,sin \left(-\frac{\pi }{3}\right) =4×32=23>0 = -4\times\frac{-\sqrt{3}}{2} = 2\sqrt{3} > 0 So, x=π6x = -\frac{\pi }{6} is a point of local minimum. At x=π6x = \frac{\pi }{6} : We have, f(π6)=4sinπ3f''\left(\frac{\pi }{6}\right) = -4\,sin \frac{\pi }{3} =4×(32)=23<0 = -4\times \left(\frac{-\sqrt{3}}{2}\right) = -2\sqrt{3} < 0 So, x=π6x = \frac{\pi }{6} is a point of local maximum.