Solveeit Logo

Question

Mathematics Question on Straight lines

Find the perpendicular distance from the origin to the line joining the points (cosθ,sinθ)(cosθ,sinθ) and (cosϕ,sinϕ).(cos\phi,sin\phi).

Answer

The equation of the line joining the points (cosθ,sinθ)(cosθ,sinθ) and (cosϕ,sinϕ)(cos\phi,sin\phi) is given by
ysinθ=sinϕsinθcosϕcosθ(xcosθ)y-sinθ=\frac{sin\phi-sinθ}{cos\phi-cosθ}(x-cosθ)

y(cosϕcosθ)sinθ(cosϕcosθ)=x(sinϕsinθ)cosθ(sinϕsinθ)y(cos\phi-cosθ)-sinθ(cos\phi-cosθ)=x(sin\phi-sinθ)-cosθ(sin\phi-sinθ)

x(sinθsinϕ)+y(cosθcosϕ)+sin(ϕθ)=0x(sinθ-sin\phi)+y(cosθ-cos\phi)+sin(\phi-θ)=0

Ax+By+C=0Ax+By+C=0, where A=sinθsinϕ,B=cosϕcosθA=sinθ-sin\phi,B=cos\phi-cosθ and C=sin(ϕθ)C=sin(\phi-θ)

It is known that the perpendicular distance (d) of a line Ax+By+C=0Ax + By + C = 0 from a point (x1,y1)(x_1, y_1) is given by

d=Ax1+By1+CA2+B2d=\frac{\left|Ax_1+By_1+C\right|}{\sqrt{A^2+B^2}}
Therefore, the perpendicular distance (d) of the given line from point (x1,y1)(x_1, y_1) = (0, 0) is

d=(sinθsinϕ)(0)+(cosϕcosθ)(0)+sin(ϕθ)(sinθsinϕ)2+(cosϕcosθ)2d=\frac{\left|(sinθ-sin\phi)(0)+(cos\phi-cosθ)(0)+sin(\phi-θ)\right|}{\sqrt{(sinθ-sin\phi)^2+(cos\phi-cosθ)^2}}

=sin(ϕθ)sin2θ+sin2ϕ2sinθsinϕ+cos2θ+cos2ϕ2cosθcosϕ=\frac{|sin(\phi-θ)|}{\sqrt{sin^2θ+sin^2\phi-2sinθsin\phi+cos^2θ+cos^2\phi-2cosθcos\phi}}

=sin(ϕθ)(sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)2(sinθsinϕ+cosθcosϕ)=\frac{|sin(\phi-θ)|}{\sqrt{(sin^2θ+cos^2θ)+(sin^2\phi+cos^2\phi)-2(sinθsin\phi+cosθcos\phi)}}

=sin(ϕθ)1+12(cos(ϕθ))=\frac{|sin(\phi-θ)|}{\sqrt{1+1-2(cos(\phi-θ))}}

=sin(ϕθ)2(1cos(ϕθ)=\frac{|sin(\phi-θ)|}{\sqrt{2(1-cos(\phi-θ)}}

=sin(ϕθ)2(2sin2(ϕθ2))=\frac{|sin(\phi-θ)|}{\sqrt{2(2sin^2(\frac{\phi-θ}{2}))}}

=sin(ϕθ)2sin(ϕθ2)=\frac{|sin(\phi-θ)|}{|2sin(\frac{\phi-θ}{2})|}