Question
Mathematics Question on Straight lines
Find the perpendicular distance from the origin to the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ).
The equation of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ) is given by
y−sinθ=cosϕ−cosθsinϕ−sinθ(x−cosθ)
y(cosϕ−cosθ)−sinθ(cosϕ−cosθ)=x(sinϕ−sinθ)−cosθ(sinϕ−sinθ)
x(sinθ−sinϕ)+y(cosθ−cosϕ)+sin(ϕ−θ)=0
Ax+By+C=0, where A=sinθ−sinϕ,B=cosϕ−cosθ and C=sin(ϕ−θ)
It is known that the perpendicular distance (d) of a line Ax+By+C=0 from a point (x1,y1) is given by
d=A2+B2∣Ax1+By1+C∣
Therefore, the perpendicular distance (d) of the given line from point (x1,y1) = (0, 0) is
d=(sinθ−sinϕ)2+(cosϕ−cosθ)2∣(sinθ−sinϕ)(0)+(cosϕ−cosθ)(0)+sin(ϕ−θ)∣
=sin2θ+sin2ϕ−2sinθsinϕ+cos2θ+cos2ϕ−2cosθcosϕ∣sin(ϕ−θ)∣
=(sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)−2(sinθsinϕ+cosθcosϕ)∣sin(ϕ−θ)∣
=1+1−2(cos(ϕ−θ))∣sin(ϕ−θ)∣
=2(1−cos(ϕ−θ)∣sin(ϕ−θ)∣
=2(2sin2(2ϕ−θ))∣sin(ϕ−θ)∣
=∣2sin(2ϕ−θ)∣∣sin(ϕ−θ)∣