Solveeit Logo

Question

Question: Find the particular solution of the differential equation \[\left( {x - y} \right)\dfrac{{dy}}{{dx...

Find the particular solution of the differential equation
(xy)dydx=(x+2y)\left( {x - y} \right)\dfrac{{dy}}{{dx}} = \left( {x + 2y} \right)
given that y=0y = 0 when x=1x = 1

Explanation

Solution

First we need to identify the category of the differential equation. If we replace x by λx\lambda x and y by λy\lambda y, we find that the differential equation doesn’t change.
Hence, it is a homogeneous differential equation. We can then use the standard method to solve this differential equation. Finding a particular solution implies that the final solution should be independent of any arbitrary constant.

Complete step-by-step solution:
Given: The differential equation is given as (xy)dydx=(x+2y)\left( {x - y} \right)\dfrac{{dy}}{{dx}} = \left( {x + 2y} \right) and y=0y = 0when x=1x = 1.
We can write the differential equation as:
dydx=x+2yxy.............(i)\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y}}{{x - y}} .............\left( i \right)
Let us puty=ϑx.............(ii)y = \vartheta x .............\left( {ii} \right)
Differentiating both sides of (ii) with respect to x, we get

dydx=d(ϑx)dx dydx=ϑdxdx+xdϑdx dydx=ϑ+xdϑdx......(ii)  \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\vartheta x} \right)}}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \vartheta \dfrac{{dx}}{{dx}} + x\dfrac{{d\vartheta }}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \vartheta + x\dfrac{{d\vartheta }}{{dx}} ......\left( {ii} \right) \\\

Putting the expression of y and dydx\dfrac{{dy}}{{dx}} in, we get

ϑ+xdϑdx=x+2ϑxxϑx ϑ+xdϑdx=1+2ϑ1ϑ xdϑdx=1+2ϑ1ϑϑ xdϑdx=1+2ϑϑ+ϑ21ϑ  \vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{x + 2\vartheta x}}{{x - \vartheta x}} \\\ \Rightarrow \vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} \\\ \Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} - \vartheta \\\ \Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta - \vartheta + {\vartheta ^2}}}{{1 - \vartheta }} \\\ xdϑdx=ϑ2+ϑ+11ϑ (1ϑ)dϑϑ2+ϑ+1=dxx  \Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{{\vartheta ^2} + \vartheta + 1}}{{1 - \vartheta }} \\\ \Rightarrow \dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}} = \dfrac{{dx}}{x} \\\

Integrating both sides

(1ϑ)dϑϑ2+ϑ+1=dxx 1ϑ=Pddϑ(ϑ2+ϑ+1)+Q ϑ+1=P(2ϑ+1)+Q ϑ+1=2Pϑ+(P+Q)  \int {\dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}}} = \int {\dfrac{{dx}}{x}} \\\ 1 - \vartheta \, = P\dfrac{d}{{d\vartheta }}\left( {{\vartheta ^2} + \vartheta + 1} \right) + Q \\\ \Rightarrow - \vartheta + 1 = P\left( {2\vartheta + 1} \right) + Q \\\ \Rightarrow - \vartheta + 1 = 2P\vartheta + \left( {P + Q} \right) \\\

On comparing both sides, we get

2P=1 P=12 P+Q=1 12+Q=1 Q=32 1ϑ=12(2ϑ+1)+32  \Rightarrow 2P = - 1 \\\ \Rightarrow P = - \dfrac{1}{2} \\\ P + Q = 1 \\\ \Rightarrow - \dfrac{1}{2} + Q = 1 \\\ \Rightarrow Q = \dfrac{3}{2} \\\ \therefore 1 - \vartheta = - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2} \\\

Thus,

12(2ϑ+1)+32(ϑ2+ϑ+1)dϑ=dxx 12(2ϑ+1)dϑ(ϑ2+ϑ+1)+32dϑ(ϑ2+ϑ+1)=dxx  \int {\dfrac{{ - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2}}}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} d\vartheta = \int {\dfrac{{dx}}{x}} \\\ \Rightarrow - \dfrac{1}{2}\int {\dfrac{{\left( {2\vartheta + 1} \right)d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}} + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} } = \int {\dfrac{{dx}}{x}} \\\ 12nϑ2+ϑ+1+32dϑ(ϑ+12)2+(32)2=dxx 12nϑ2+ϑ+1+32×23tan1(ϑ+1232)=nx+C  \Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{{{\left( {\vartheta + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \int {\dfrac{{dx}}{x}} } \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\vartheta + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) = \ell n|x| + C \\\ 12nϑ2+ϑ+1+3tan1(2ϑ+13)=nx+C y=ϑx ϑ=yx 12ny2x2+yx+1+3tan1(2y+x3x)=nx+C  \Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2\vartheta + 1}}{{\sqrt 3 }}} \right) = \ell n\left| x \right| + C \\\ \because y = \vartheta x \\\ \Rightarrow \vartheta = \dfrac{y}{x} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + C \\\

Now, we need to find the value of C
y=0\because y = 0when x=1x = 1 , we have

\-12n0+0+1+3tan1(13)=n1+C 12n1+3tan1(13)=n1+C 0+3(π6)=0+C C=3π6 V=π2  \- \dfrac{1}{2}\ell n\left| {0 + 0 + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| 1 \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\\ \Rightarrow 0 + \sqrt 3 \left( {\dfrac{\pi }{6}} \right) = 0 + C \\\ \Rightarrow C = \dfrac{{\sqrt 3 \pi }}{6} \\\ \,\,\,\,\,\therefore V = \dfrac{\pi }{{\sqrt 2 }} \\\

Therefore, the particular solution of the given differential equation becomes

=12ny2x2+yx+1+3tan1(2y+x3x)=nx+π2 12ny2+xy+x2x2+3tan1(2y+x3x)=nx+π2 12nx2+y2+xy+12nx2+3tan1(2y+x3x)=nx+π2 12nx2+y2+xy+12n(x2)+3tan1(2y+x3x)=nx+π2 12nx2+y2+xynx+3tan1(2y+x3x)=nx+π2 12nx2+y2+xy+3tan1(2y+x3x)=π2  = \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2} + xy + {x^2}}}{{{x^2}}}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left| {{x^2}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left( {{x^2}} \right) + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right|\ell n\left| x \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\\ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }} \\\

Hence, the final solution is
12nx2+y2+xy+3tan1(2y+x3x)=π2\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }}

Note: The students must keep in mind all the formulas of integration along with some standard forms of the differential equation. The problems of integration often require the similar kind of algorithm to be solved. Students are suggested to practice these kinds of questions as much as it is possible.