Solveeit Logo

Question

Question: Find the particular solution of the differential equation \[{e^x}\,\tan \,y\,\,dx\, + \,(2 - {e^x})\...

Find the particular solution of the differential equation extanydx+(2ex)sec2ydy=0{e^x}\,\tan \,y\,\,dx\, + \,(2 - {e^x})\,{\sec ^2}y\,dy = 0 , given that y=π4y = \dfrac{\pi }{4} when x=0x = 0

Explanation

Solution

According to the given equation, first rearrange all the x terms on one side and y terms on the other side. Then integrate both the left and right side separately by substitution method that is t=2ext = 2 - {e^x} and tany=u\tan \,y = u .Then substitute the given values of x and y in the calculated integral equation. At last we get an equation that is the particular solution of the differential equation.

Complete step-by-step solution:
As it is given that, y=π4y = \,\dfrac{\pi }{4} when x=0x = 0 And we have to find the particular solution of the differential equation that is extanydx+(2ex)sec2y.dy=0{e^x}\tan \,y\,dx\, + \,(2 - {e^x})\,\,{\sec ^2}y.\,dy = 0
Taking (2ex)sec2y.dy(2 - {e^x})\,\,{\sec ^2}y.\,dy on right side of the equation,
So, we get
extanydx=(2ex).sec2ydy{e^x}\,\tan \,y\,dx = \, - (2 - \,{e^x}).\,{\sec ^2}y\,dy
Re-shifting everything and taking integration on both side we get,
ex2exdx=sec2ytanydy\Rightarrow \,\int { - \dfrac{{{e^x}}}{{2 - {e^x}}}\,dx\,\, = \,\,} \,\int {\dfrac{{{{\sec }^2}y}}{{\tan \,y}}\,dy} eq. (1)
Now, take t=2ext = 2 - {e^x}
Therefore, on differentiating tt with respect to xx we get,
dtdx=ex\dfrac{{dt}}{{dx}} = \, - {e^x}
Taking dx on the right side,
dt=exdx\therefore \,dt = \, - {e^x}\,dx eq. (2)
Now, for the right-hand side we have
tany=u\tan \,y = u
Now differentiating with respect to yy we get,
sec2y=dudx{\sec ^2}y = \dfrac{{du}}{{dx}}
Calculating the value of du in terms of dx
du=sec2y.dx\Rightarrow \,du = {\sec ^2}y.\,dx eq. (3)
Now, putting the value of eq. (1) and eq. (2) in eq. (1) we get,
dtt=1udu\int {\dfrac{{dt}}{t}} = \,\int {\dfrac{1}{u}\,du} [Remember 1xdx=lnx\int {\dfrac{1}{x}dx} = \,\ln \,x ]
So, we get
lnt=lnu+c\Rightarrow \,\ln \,\,t = \,\ln \,u + \,c
By substituting the value of uuand tt we get,
ln(2ex)=lntany+c\Rightarrow \ln (2 - {e^x})\, = \,\ln \,\tan \,y + c
or
ln(2ex)=ln(tany)+c\Rightarrow \ln (2 - {e^x})\, = \,\ln (\tan \,y)\, + c
Now putting the value of y=π4y = \dfrac{\pi }{4} and x=0x = 0 we get
ln(2e0)=ln(tanπ4)+c\ln (2 - {e^0})\, = \ln (\tan \,\dfrac{\pi }{4})\, + \,c
As, we know e0=1{e^0} = 1 and tanπ4=1\tan \dfrac{\pi }{4} = 1
ln(21)=ln(1)+c\Rightarrow \ln (2 - 1) = \ln (1) + c\,
And we also know that ln1=0\ln \,1 = 0
0=0+c\Rightarrow \,0 = 0 + c
So, we get the value of c
c=0\Rightarrow \,c = 0
Therefore, the value of c is zero.
Now, putting the value of c in the given equation we get,
ln(2ex)=ln(tany)+0\ln (2 - {e^x}) = \,\ln (\tan \,y)\, + 0
ln(2ex)=ln(y)\Rightarrow \ln (2 - {e^x}) = \ln (y)
Taking ln(y)\ln (y) on the left side of the equation we get,
ln(2ex)ln(y)=0\Rightarrow \ln (2 - {e^x})\, - \,\ln (y) = 0
As we know ln(A)ln(B)=ln(AB)\ln \left( A \right) - \ln \left( B \right) = \ln \left( {\dfrac{A}{B}} \right)
ln(2exy)=0\Rightarrow \ln \left( {\dfrac{{2 - {e^x}}}{y}} \right) = 0
Taking ln on the light side which becomes e so we get,
2exy=e0\Rightarrow \,\dfrac{{2 - {e^x}}}{y} = {e^0}
As we know e0=1{e^0} = 1
2exy=1\Rightarrow \,\dfrac{{2 - {e^x}}}{y} = 1
Takin y on left side so,
\Rightarrow 2 - {e^x} = y$$$$ \Rightarrow {e^x} + y = 2
On rearranging the terms we get,
ex+y2=0\Rightarrow {e^x} + y - 2 = 0

Thus, the particular solution of the differential equation is
ex+y2=0{e^x} + y - 2 = 0

Note: To solve these types of questions, do not forget to separate the variable on the left and right side of the equation and use substitution method for integration in a simpler way as done in the given question. Remember all the values of e0=1{e^0} = 1 , ln1=0\ln \,1 = 0 and tanπ4=1\tan \dfrac{\pi }{4} = 1 to get the required answer.