Solveeit Logo

Question

Mathematics Question on Differential equations

Find the particular solution of the differential equation (1+e2x)dy+(1+y2)exdx=0(1+e^{2x})dy+(1+y^2)e^xdx=0, given that y=1y=1 when x=0x=0

Answer

(1+e2x)dy+(1+y2)exdx=0(1+e^{2x})dy+(1+y^2)e^xdx=0

dy1+y2+exdx1+e2x=0⇒\frac {dy}{1+y^2}+\frac {e^xdx}{1+e^{2x}}=0

Integrating both sides,we get:

tan1y+exdx1+e2x=Ctan^{-1}y+∫\frac {e^xdx}{1+e^{2x}}=C ...(1)

Let ex=te2x=t2.Let\ e^x=t⇒e^{2x}=t^2.

ddx(ex)=dtdx⇒\frac {d}{dx}(e^x)=\frac {dt}{dx}

ex=dtdx⇒e^x=\frac {dt}{dx}

exdx=dt⇒e^xdx=dt

Substituting these values in equation (1), we get:

tan1y+dt1+t2=Ctan^{-1}y+∫\frac {dt}{1+t^2}=C

tan1y+tan1t=C⇒tan^{-1}y+tan^{-1}t=C

tan1y+tan1(ex)=C⇒tan^{-1}y+tan^{-1} (e^x)=C ...(2)

Now, y=1 at x=0.

Therefore, equation (2) becomes:

tan11+tan11=Ctan^{-1}1+tan^{-1} 1=C

π4+π4=C⇒\frac \pi4+\frac \pi4=C

C=π2⇒C=\frac \pi2

Substituting π2\frac \pi2 in equation (2), becomes:

tan1y+tan1(ex)=π2tan^{-1}y+tan^{-1}(e^x)=\frac \pi2

This is the required particular solution of the given differential equation.