Solveeit Logo

Question

Question: Find the numerical value of k if \(k=\sin \dfrac{\pi }{18}\sin \dfrac{5\pi }{18}\sin \dfrac{7\pi }{1...

Find the numerical value of k if k=sinπ18sin5π18sin7π18k=\sin \dfrac{\pi }{18}\sin \dfrac{5\pi }{18}\sin \dfrac{7\pi }{18} .
(a) 12\dfrac{1}{2}
(b) 14\dfrac{1}{4}
(c) 18\dfrac{1}{8}
(d) 118\dfrac{1}{18}

Explanation

Solution

Hint: First of all, we will convert all the angles in radian into degrees by using the formula, degree=180π×radian\text{degree}=\dfrac{180}{\pi }\times \text{radian}. Then, by using the formulas of trigonometry which can be given as, 2sinαsinβ=cos(αβ)cos(α+β)2\sin \alpha \sin \beta =\cos \left( \alpha -\beta \right)-\cos \left( \alpha +\beta \right) and 2cosαsinβ=sin(α+β)sin(αβ)2\cos \alpha \sin \beta =\sin \left( \alpha +\beta \right)-\sin \left( \alpha -\beta \right), we will solve the problem and find the value of k.

Complete step-by-step solution -
In question we are given that, k=sinπ18sin5π18sin7π18k=\sin \dfrac{\pi }{18}\sin \dfrac{5\pi }{18}\sin \dfrac{7\pi }{18}, and we are asked to find the value of k, so first of all we will convert radian into degree by using the formula,
degree=180π×radian\text{degree}=\dfrac{180}{\pi }\times \text{radian}
So, the radian to degree conversion for π18\dfrac{\pi }{18}, 5π18\dfrac{5\pi }{18} and 7π18\dfrac{7\pi }{18}, can be given as,
π18=180π×π18=10\dfrac{\pi }{18}=\dfrac{180}{\pi }\times \dfrac{\pi }{18}={{10}^{\circ }}
5π18=180π×5π18=50\dfrac{5\pi }{18}=\dfrac{180}{\pi }\times \dfrac{5\pi }{18}={{50}^{\circ }}
7π18=180π×7π18=70\dfrac{7\pi }{18}=\dfrac{180}{\pi }\times \dfrac{7\pi }{18}={{70}^{\circ }}
Substituting these values in expression, we will get,
k=sin10sin50sin70k=\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }} …………..(i)
Now, from expression we can see that two sines are in multiplication so to simplify further we can apply the formula of trigonometry which can be given as,
2sinαsinβ=cos(αβ)cos(α+β)2\sin \alpha \sin \beta =\cos \left( \alpha -\beta \right)-\cos \left( \alpha +\beta \right) ……………(ii)
Now, on comparing expression (ii) with expression (i), we can say that α=10\alpha ={{10}^{\circ }} and β=50\beta ={{50}^{\circ }}, on substituting these values in expression (ii) we will get,
2sin10sin50=cos(1050)cos(10+50)2\sin 10\sin 50=\cos \left( 10-50 \right)-\cos \left( 10+50 \right) …………….(iii)
Now, first of all we will multiply and divide 2 in expression (i), to bring it in the form of expression (ii), so, on multiplying and dividing expression (i) with 2, we will get,
k=22sin10sin50sin70k=12(2sin10sin50)sin70k=\dfrac{2}{2}\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}\Rightarrow k=\dfrac{1}{2}\left( 2\sin {{10}^{\circ }}\sin {{50}^{\circ }} \right)\sin {{70}^{\circ }}
Now, on substituting the values of expression (iii) in expression (i) we will get,
k=12(cos(1050)cos(10+50))sin70k=\dfrac{1}{2}\left( \cos \left( 10-50 \right)-\cos \left( 10+50 \right) \right)\sin {{70}^{\circ }}
k=12(cos(40)cos(60))sin70\Rightarrow k=\dfrac{1}{2}\left( \cos \left( -40 \right)-\cos \left( 60 \right) \right)\sin {{70}^{\circ }}
Now, we know that cos is even function so, cos(40)=cos40\cos \left( -40 \right)=\cos {{40}^{\circ }} and value of cos(60)=12\cos \left( 60 \right)=\dfrac{1}{2}, so on substituting these values in above expression we will get,
k=12(cos(40)12)sin70\Rightarrow k=\dfrac{1}{2}\left( \cos \left( 40 \right)-\dfrac{1}{2} \right)\sin {{70}^{\circ }}
On further the expression simplifying we will get,
k=12cos40sin7014sin70\Rightarrow k=\dfrac{1}{2}\cos {{40}^{\circ }}\sin {{70}^{\circ }}-\dfrac{1}{4}\sin {{70}^{\circ }} ………………..(iv)
Now, on looking at the expression (iv), we can say that cos and sin are in multiplication, so, we can use the trigonometric formula which can be given as,
2cosαsinβ=sin(α+β)sin(αβ)2\cos \alpha \sin \beta =\sin \left( \alpha +\beta \right)-\sin \left( \alpha -\beta \right) …………….(v)
Now, again doing same process as above, i.e. on comparing the expression (iv) with expression (v), we can say that α=40\alpha ={{40}^{\circ }} and β=70\beta ={{70}^{\circ }} , on substituting these values in expression (v) we will get,
2cos40sin70=sin(40+70)sin(4070)2\cos 40\sin 70=\sin \left( 40+70 \right)-\sin \left( 40-70 \right) ………………..(vi)
Now, again we will multiply and divide expression (iv) with 2 and then on substituting the value of expression (vi) we will get,
k=12(22cos40sin70)12sin70k=14(2cos40sin70)14sin70k=\dfrac{1}{2}\left( \dfrac{2}{2}\cos {{40}^{\circ }}\sin {{70}^{\circ }} \right)-\dfrac{1}{2}\sin {{70}^{\circ }}\Rightarrow k=\dfrac{1}{4}\left( 2\cos {{40}^{\circ }}\sin {{70}^{\circ }} \right)-\dfrac{1}{4}\sin {{70}^{\circ }}
k=14(sin(110)sin(30))14sin70\Rightarrow k=\dfrac{1}{4}\left( \sin \left( 110 \right)-\sin \left( -30 \right) \right)-\dfrac{1}{4}\sin {{70}^{\circ }}
Now, as sin is odd function the value of sin(30)=sin30\sin \left( -30 \right)=-\sin {{30}^{\circ }} and the value of sin(30)=12\sin \left( 30 \right)=\dfrac{1}{2}, so on substituting these values in above expression we will get,
k=14(sin110+sin30)1+sin70\Rightarrow k=\dfrac{1}{4}\left( \sin {{110}^{\circ }}+\sin {{30}^{\circ }} \right)-\dfrac{1}{+}\sin {{70}^{\circ }}
k=14sin110+14×1214sin70\Rightarrow k=\dfrac{1}{4}\sin {{110}^{\circ }}+\dfrac{1}{4}\times \dfrac{1}{2}-\dfrac{1}{4}\sin {{70}^{\circ }}
Now, we know that sin110=sin(18070)=sin70\sin 110=\sin \left( 180-70 \right)=\sin 70, so on substituting this in expression above we will get,
k=14sin70+14×1214sin70k=14×12=18\Rightarrow k=\dfrac{1}{4}\sin {{70}^{\circ }}+\dfrac{1}{4}\times \dfrac{1}{2}-\dfrac{1}{4}\sin {{70}^{\circ }}\Rightarrow k=\dfrac{1}{4}\times \dfrac{1}{2}=\dfrac{1}{8}
Hence, the value of k is 18\dfrac{1}{8}.
Thus, option (c) is the correct answer.

Note: Student might use the formula of 2cosαsinβ2\cos \alpha \sin \beta , as 2cosαsinβ=sin(α+β)+sin(αβ)2\cos \alpha \sin \beta =\sin \left( \alpha +\beta \right)+\sin \left( \alpha -\beta \right) instead of 2cosαsinβ=sin(α+β)sin(αβ)2\cos \alpha \sin \beta =\sin \left( \alpha +\beta \right)-\sin \left( \alpha -\beta \right) and due to that the value will become, 2cosαsinβ=sin(40+70)+sin(4070)=sin110sin302\cos \alpha \sin \beta =\sin \left( 40+70 \right)+\sin \left( 40-70 \right)=\sin {{110}^{\circ }}-\sin {{30}^{\circ }}. When we substitute these value in expression (vi) we will get, k=14(sin(110)+sin(30))14sin70=14sin11014×1214sin70k=\dfrac{1}{4}\left( \sin \left( 110 \right)+\sin \left( -30 \right) \right)-\dfrac{1}{4}\sin {{70}^{\circ }}=\dfrac{1}{4}\sin {{110}^{\circ }}-\dfrac{1}{4}\times \dfrac{1}{2}-\dfrac{1}{4}\sin {{70}^{\circ }}
And by simplifying it further we will get, k=18k=-\dfrac{1}{8}, which is completely opposite to our answer and it is incorrect also. So, students must be careful while using the formulas.