Question
Question: Find the number of values of x which satisfying, \(\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-...
Find the number of values of x which satisfying, [tan−1x]+[cot−1x]=2 , where [.] denotes greatest integer function.
(a) 0
(b) 1
(c) 2
(d) 3
Solution
To solve this question firstly we will find out he range of [tan−1x]and [cot−1x]. Then, we will find out the all possible cases for which leads to [tan−1x]+[cot−1x]=2. Then, we will solve all the cases and find out the all possible numbers of x satisfying [tan−1x]+[cot−1x]=2.
Complete step-by-step solution:
Before we start the question, let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if n≤xForexampleifweputx=−3.1iny=[x],theny=−4andifweputx=0.2iny=[x],theny=0.Graphofy=[x]isgivenas,Graphofy=[{{\cot }^{-1}}x]isgivenas,Graphofy=[ta{{n}^{-1}}x]isgivenasNow,inquestionitisaskedtofindthevaluesofxsuchthat,\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2Now,letusfindtherangeof\left[ {{\tan }^{-1}}x \right]and\left[ {{\cot }^{-1}}x \right]Asweknowthat,-\dfrac{\pi }{2}<{{\tan }^{-1}}x<\dfrac{\pi }{2}So,usingdefinitionofgreatestintegerfunction,weget\left[ {{\tan }^{-1}}x \right]=\{-2,-1,0,1\}Similarly,weknowthat0<{{\cot }^{-1}}x<\pi So,usingdefinitionofgreatestintegerfunction,weget\left[ {{\cot }^{-1}}x \right]=\{0,1,2,3\}Now,wecanseethattogetasumofatotalof2,wehavethreecases.So,letseethosecasesonbyone.Case−1When,\left[ {{\tan }^{-1}}x \right]=\left[ {{\cot }^{-1}}x \right]=1Weget,\left[ {{\tan }^{-1}}x \right]=1Usingdefinitionofgreatestintegerfunctionweget1\le {{\tan }^{-1}}x<\dfrac{\pi }{2}Then,x\in [\tan 1,\infty )…..(i),as\tan \dfrac{\pi }{2}=\infty For,\left[ {{\cot }^{-1}}x \right]=1Usingdefinitionofgreatestintegerfunctionweget1\le {{\cot }^{-1}}x<2Then,x\in (cot2,cot1]……..(ii),ascot2<cot1So,from(i)and(ii),wegetx\in \phi ascot1<tan1Hence,NosolutionCase–2When,\left[ {{\tan }^{-1}}x \right]=0,\left[ {{\cot }^{-1}}x \right]=2Weget,\left[ {{\tan }^{-1}}x \right]=0Usingdefinitionofgreatestintegerfunctionweget0\le {{\tan }^{-1}}x<1Then,x\in [\tan 0,tan1)…..(iii),as\tan \dfrac{\pi }{2}=\infty For,\left[ {{\cot }^{-1}}x \right]=2Usingdefinitionofgreatestintegerfunctionweget2\le {{\cot }^{-1}}x<3Then,x\in (cot3,cot2]……..(iv),ascot3<cot2So,from(iii)and(iv),wegetx\in \phi ,ascot2<tan1Hence,NosolutionCase–3When,\left[ {{\tan }^{-1}}x \right]=-1,\left[ {{\cot }^{-1}}x \right]=3Weget,\left[ {{\tan }^{-1}}x \right]=-1Usingdefinitionofgreatestintegerfunctionweget-1\le {{\tan }^{-1}}x<0Then,x\in [-\tan 1,tan0)…..(v),For,\left[ {{\cot }^{-1}}x \right]=3Usingdefinitionofgreatestintegerfunctionweget3\le {{\cot }^{-1}}x<\infty Then,x\in [cot3,\infty )……..(vi),as\cot 3<\infty So,from(v)and(vi),wegetx\in \phi ,ascot3<−tan1Hence,NosolutionSo,forallthreecases,wehavenosolution.Then,thereexistnox,suchthat\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2$.
Hence, option ( a ) is true.
Note: Always remember that y = [ x ] = n if n≤x<n+1 that is x∈[n,n+1). While solving the question, consider all the cases which can be solved further to get the answer according to the question. Try not to do any calculation mistake as this will change the final answer.