Solveeit Logo

Question

Question: Find the number of values of x which satisfying, \(\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-...

Find the number of values of x which satisfying, [tan1x]+[cot1x]=2\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2 , where [.] denotes greatest integer function.
(a) 0
(b) 1
(c) 2
(d) 3

Explanation

Solution

To solve this question firstly we will find out he range of [tan1x]\left[ {{\tan }^{-1}}x \right]and [cot1x]\left[ {{\cot }^{-1}}x \right]. Then, we will find out the all possible cases for which leads to [tan1x]+[cot1x]=2\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2. Then, we will solve all the cases and find out the all possible numbers of x satisfying [tan1x]+[cot1x]=2\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2.

Complete step-by-step solution:
Before we start the question, let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if nxForexampleifweputx=3.1iny=[x],theny=4andifweputx=0.2iny=[x],theny=0.Graphofy=[x]isgivenas,![](https://www.vedantu.com/questionsets/209614f6f9584a94b8402c8e50721f696802678382409336215.png)Graphofn\le xFor example if we put x = -3.1 in y = [ x ], then y = - 4 and if we put x = 0.2 in y = [ x ], then y = 0. Graph of y = [ x ] is given as, ![](https://www.vedantu.com/question-sets/209614f6-f958-4a94-b840-2c8e50721f696802678382409336215.png) Graph of y=[{{\cot }^{-1}}x]isgivenas,![](https://www.vedantu.com/questionsets/e37c169e2cb44ef3a800e4e6dcb8fd895065042810054965559.png)Graphofis given as, ![](https://www.vedantu.com/question-sets/e37c169e-2cb4-4ef3-a800-e4e6dcb8fd895065042810054965559.png) Graph ofy=[ta{{n}^{-1}}x]isgivenas![](https://www.vedantu.com/questionsets/7f00202a07214c2ca84622929eeb735b4828445983731272184.png)Now,inquestionitisaskedtofindthevaluesofxsuchthat,is given as ![](https://www.vedantu.com/question-sets/7f00202a-0721-4c2c-a846-22929eeb735b4828445983731272184.png) Now, in question it is asked to find the values of x such that,\left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2Now,letusfindtherangeof Now, let us find the range of\left[ {{\tan }^{-1}}x \right]andand \left[ {{\cot }^{-1}}x \right]Asweknowthat, As we know that,-\dfrac{\pi }{2}<{{\tan }^{-1}}x<\dfrac{\pi }{2}So,usingdefinitionofgreatestintegerfunction,weget So, using definition of greatest integer function, we get \left[ {{\tan }^{-1}}x \right]=\{-2,-1,0,1\}Similarly,weknowthat Similarly, we know that0<{{\cot }^{-1}}x<\pi So,usingdefinitionofgreatestintegerfunction,weget So, using definition of greatest integer function, we get \left[ {{\cot }^{-1}}x \right]=\{0,1,2,3\}Now,wecanseethattogetasumofatotalof2,wehavethreecases.So,letseethosecasesonbyone.Case1When, Now, we can see that to get a sum of a total of 2, we have three cases. So, let see those cases on by one. Case- 1 When,\left[ {{\tan }^{-1}}x \right]=\left[ {{\cot }^{-1}}x \right]=1Weget, We get,\left[ {{\tan }^{-1}}x \right]=1Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get 1\le {{\tan }^{-1}}x<\dfrac{\pi }{2}Then, Then,x\in [\tan 1,\infty )..(i),as…..( i ), as\tan \dfrac{\pi }{2}=\infty For, For,\left[ {{\cot }^{-1}}x \right]=1Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get 1\le {{\cot }^{-1}}x<2Then, Then,x\in (cot2,cot1]..(ii),ascot2<cot1So,from(i)and(ii),weget……..( ii ) , as cot2 < cot1 So, from ( i ) and ( ii ), we get x\in \phi ascot1<tan1Hence,NosolutionCase2When,as cot 1 < tan 1 Hence, No solution Case – 2 When,\left[ {{\tan }^{-1}}x \right]=0,\left[ {{\cot }^{-1}}x \right]=2Weget, We get,\left[ {{\tan }^{-1}}x \right]=0Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get 0\le {{\tan }^{-1}}x<1Then, Then,x\in [\tan 0,tan1)..(iii),as…..( iii ), as\tan \dfrac{\pi }{2}=\infty For, For,\left[ {{\cot }^{-1}}x \right]=2Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get 2\le {{\cot }^{-1}}x<3Then, Then,x\in (cot3,cot2]..(iv),ascot3<cot2So,from(iii)and(iv),weget……..( iv ) , as cot3 < cot2 So, from ( iii ) and ( iv ), we get x\in \phi ,ascot2<tan1Hence,NosolutionCase3When,, as cot 2 < tan 1 Hence, No solution Case – 3 When, \left[ {{\tan }^{-1}}x \right]=-1,\left[ {{\cot }^{-1}}x \right]=3Weget, We get,\left[ {{\tan }^{-1}}x \right]=-1Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get -1\le {{\tan }^{-1}}x<0Then, Then,x\in [-\tan 1,tan0)..(v),For,…..( v ), For,\left[ {{\cot }^{-1}}x \right]=3Usingdefinitionofgreatestintegerfunctionweget Using definition of greatest integer function we get 3\le {{\cot }^{-1}}x<\infty Then, Then,x\in [cot3,\infty )..(vi),as……..( vi ) , as \cot 3<\infty So,from(v)and(vi),weget So, from ( v ) and ( vi ), we get x\in \phi ,ascot3<tan1Hence,NosolutionSo,forallthreecases,wehavenosolution.Then,thereexistnox,suchthat, as cot 3 < -tan 1 Hence, No solution So, for all three cases, we have no solution. Then, there exist no x, such that \left[ {{\tan }^{-1}}x \right]+\left[ {{\cot }^{-1}}x \right]=2$.
Hence, option ( a ) is true.

Note: Always remember that y = [ x ] = n if nx<n+1n\le x< n+1 that is x[n,n+1)x\in [n,n+1). While solving the question, consider all the cases which can be solved further to get the answer according to the question. Try not to do any calculation mistake as this will change the final answer.