Solveeit Logo

Question

Question: Find the number of solutions of the equation tanx +secx = 2cosx in the interval \(\left[ 0,2\pi \rig...

Find the number of solutions of the equation tanx +secx = 2cosx in the interval [0,2π]\left[ 0,2\pi \right]

Explanation

Solution

Hint: Convert tanx and secx into sines and cosines using tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x}. Use cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x and a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to factorise the expression. Using zero product property form two trigonometric equations. Find the solutions of those equations in [0,2π]\left[ 0,2\pi \right] and hence find the total number of solutions of the original equation in [0,2π]\left[ 0,2\pi \right].

Complete Step-by-step answer:
We have LHS =tanx+secx=\tan x+\sec x
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x}.
Using the above formulae, we get
LHS = sinxcosx+1cosx\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x}
Hence the equation becomes
sinxcosx+1cosx=2cosx\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x}=2\cos x
Taking cosx LCM on LHS, we get
sinx+1cosx=2cosx\dfrac{\sin x+1}{\cos x}=2\cos x
Multiplying both sides by cosx, we get
sinx+1=2cos2x\sin x+1=2{{\cos }^{2}}x
We know that cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x
Hence we have
sinx+1=2(1sin2x)\sin x+1=2\left( 1-{{\sin }^{2}}x \right)
We know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)
Hence, we have
1sin2x=(1+sinx)(1sinx)1-{{\sin }^{2}}x=\left( 1+\sin x \right)\left( 1-\sin x \right)
Hence we have
1+sinx=2(1sinx)(1+sinx)1+\sin x=2\left( 1-\sin x \right)\left( 1+\sin x \right)
Transposing terms on RHS to LHS, we get
1+sinx2(1sinx)(1+sinx)=01+\sin x-2\left( 1-\sin x \right)\left( 1+\sin x \right)=0
Taking 1+sinx common, we get
(1+sinx)(12(1sinx))=0 (1+sinx)(2sinx1)=0 \begin{aligned} & \left( 1+\sin x \right)\left( 1-2\left( 1-\sin x \right) \right)=0 \\\ & \Rightarrow \left( 1+\sin x \right)\left( 2\sin x-1 \right)=0 \\\ \end{aligned}
We know that if ab = 0, then a = 0 or b = 0 (Zero product property)
Hence we have
1+sinx=01+\sin x=0 or 2sinx1=02\sin x-1=0
Solving 1+sinx = 0:
Subtracting 1 from both sides, we get
sinx =-1
We know that sin(3π2)=1\sin \left( \dfrac{3\pi }{2} \right)=-1
Hence, we have
sinx=sin(3π2)\sin x=\sin \left( \dfrac{3\pi }{2} \right)
We know that the general solution of the equation sinx=siny\sin x=\sin y is given by x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y
Hence we have x=nπ+(1)n3π2x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{3\pi }{2}
Hence if x[0,2π]x\in \left[ 0,2\pi \right], we have x=3π2x=\dfrac{3\pi }{2}
Solving 2sinx-1=0:
Adding 1 on both sides, we get
2sinx=12\sin x=1
Dividing by 2 on both sides, we get
sinx=12\sin x=\dfrac{1}{2}
We know that sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}
Hence we have
sinx=sin(π6)\sin x=\sin \left( \dfrac{\pi }{6} \right)
Now we know that the general solution of the equation sinx=siny\sin x=\sin y is given by x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}
Hence we have
x=nπ+(1)nπ6x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{6}
Taking n = 0, 1 we get
x=π6,5π6x=\dfrac{\pi }{6},\dfrac{5\pi }{6}
Note that when x=3π2x=\dfrac{3\pi }{2} cosx = 0 and hence tanx and secx do not exist.
Hence the only solutions are x=π6,5π6x=\dfrac{\pi }{6},\dfrac{5\pi }{6}.
Hence the number of solutions of the equation tanx+secx=2cosx\tan x+\sec x=2\cos x in the interval [0,2π]\left[ 0,2\pi \right] is two.

Note: [1] Do not forget to check whether each of the roots is in the domain or not. Failure to do so often leads to incorrect results in solving trigonometric equations.
Hence it is very important to check each of the roots in the original equation.
[2] The graph of tanx +secx (green) and 2cosx (blue) are plotted below:

As is evident from the graph in the interval[A=0,B=2π]\left[ A=0,B=2\pi \right], only two solutions exist: C and D.