Solveeit Logo

Question

Question: Find the number of solution of the equation $16^{\sin^2x} + 16^{\cos^2x} = 10$, where $0 \le x \le 2...

Find the number of solution of the equation 16sin2x+16cos2x=1016^{\sin^2x} + 16^{\cos^2x} = 10, where 0x2π0 \le x \le 2\pi.

Answer

8

Explanation

Solution

Let y=sin2xy = \sin^2x. Then cos2x=1sin2x=1y\cos^2x = 1 - \sin^2x = 1 - y. The equation becomes 16y+161y=1016^y + 16^{1-y} = 10. Let z=16yz = 16^y. Then z+16z=10z + \frac{16}{z} = 10. Multiplying by zz, we get z2+16=10zz^2 + 16 = 10z, or z210z+16=0z^2 - 10z + 16 = 0. Factoring, (z2)(z8)=0(z-2)(z-8) = 0, so z=2z=2 or z=8z=8.

Case 1: 16y=2    (24)y=21    24y=21    4y=1    y=1416^y = 2 \implies (2^4)^y = 2^1 \implies 2^{4y} = 2^1 \implies 4y=1 \implies y = \frac{1}{4}. Since y=sin2xy = \sin^2x, we have sin2x=14\sin^2x = \frac{1}{4}, which means sinx=±12\sin x = \pm \frac{1}{2}. For sinx=12\sin x = \frac{1}{2}, x=π6,5π6x = \frac{\pi}{6}, \frac{5\pi}{6}. For sinx=12\sin x = -\frac{1}{2}, x=7π6,11π6x = \frac{7\pi}{6}, \frac{11\pi}{6}. This gives 4 solutions.

Case 2: 16y=8    (24)y=23    24y=23    4y=3    y=3416^y = 8 \implies (2^4)^y = 2^3 \implies 2^{4y} = 2^3 \implies 4y=3 \implies y = \frac{3}{4}. Since y=sin2xy = \sin^2x, we have sin2x=34\sin^2x = \frac{3}{4}, which means sinx=±32\sin x = \pm \frac{\sqrt{3}}{2}. For sinx=32\sin x = \frac{\sqrt{3}}{2}, x=π3,2π3x = \frac{\pi}{3}, \frac{2\pi}{3}. For sinx=32\sin x = -\frac{\sqrt{3}}{2}, x=4π3,5π3x = \frac{4\pi}{3}, \frac{5\pi}{3}. This gives another 4 solutions.

All 8 solutions are distinct and lie in the interval 0x2π0 \le x \le 2\pi. The total number of solutions is 4+4=84 + 4 = 8.