Solveeit Logo

Question

Question: Find the number of molecule of CNS 2/2 if Y to produce 0.25 moles of and no and find the volume of O...

Find the number of molecule of CNS 2/2 if Y to produce 0.25 moles of and no and find the volume of O2 produced on STP also find the number of atoms present in reaction at the given condition

Answer

Number of molecules of CNS 2/2 = 7.5275 × 10^22 molecules, Volume of O2 required at STP = 14 L, Number of atoms in products = 1.2044 × 10^24 atoms

Explanation

Solution

The problem statement is poorly phrased and contains ambiguities and likely typos. We will proceed by making the most plausible assumptions to make the problem solvable, aligning with typical stoichiometry questions.

Assumptions:

  1. "CNS 2/2": This is interpreted as the chemical formula C2N2S2C_2N_2S_2 (thiocyanogen). The "Y" refers to this compound.
  2. "0.25 moles of and no": This is interpreted as "0.25 moles of NO (nitric oxide)". NO is a product.
  3. "volume of O2 produced on STP": Given that C2N2S2C_2N_2S_2 contains C and S, a reaction involving O2O_2 is likely a combustion/oxidation. In such reactions, O2O_2 is typically a reactant. Therefore, "produced" is assumed to be a typo for "required".
  4. "number of atoms present in reaction at the given condition": Similar to the provided example, this is interpreted as the total number of atoms in the products formed under the given conditions.

Step 1: Write and Balance the Chemical Equation Assuming C2N2S2C_2N_2S_2 reacts with O2O_2 to produce NONO, CO2CO_2, and SO2SO_2: C2N2S2+O2NO+CO2+SO2C_2N_2S_2 + O_2 \rightarrow NO + CO_2 + SO_2

Balance the equation:

  • Balance C: 2 C on left, so 2CO22CO_2 on right.
  • Balance N: 2 N on left, so 2NO2NO on right.
  • Balance S: 2 S on left, so 2SO22SO_2 on right.
  • Now, balance O: Reactant side: xO2x O_2 Product side: 2 (from NO)+2×2 (from CO2)+2×2 (from SO2)=2+4+4=102 \text{ (from NO)} + 2 \times 2 \text{ (from CO2)} + 2 \times 2 \text{ (from SO2)} = 2 + 4 + 4 = 10 oxygen atoms. So, 5O25O_2 on the reactant side.

The balanced chemical equation is: C2N2S2(s)+5O2(g)2NO(g)+2CO2(g)+2SO2(g)C_2N_2S_2 (s) + 5O_2 (g) \rightarrow 2NO (g) + 2CO_2 (g) + 2SO_2 (g)

Step 2: Calculate the Number of Molecules of C2N2S2C_2N_2S_2 From the balanced equation, 1 mole of C2N2S2C_2N_2S_2 produces 2 moles of NO. Given that 0.25 moles of NO are produced. Moles of C2N2S2C_2N_2S_2 required = 0.25 mol NO×1 mol C2N2S22 mol NO=0.125 mol C2N2S20.25 \text{ mol NO} \times \frac{1 \text{ mol } C_2N_2S_2}{2 \text{ mol NO}} = 0.125 \text{ mol } C_2N_2S_2.

Number of molecules = Moles ×\times Avogadro's Number (NA=6.022×1023 molecules/molN_A = 6.022 \times 10^{23} \text{ molecules/mol}) Number of molecules of C2N2S2=0.125 mol×6.022×1023 molecules/molC_2N_2S_2 = 0.125 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} Number of molecules of C2N2S2=7.5275×1022C_2N_2S_2 = 7.5275 \times 10^{22} molecules.

Step 3: Calculate the Volume of O2O_2 Required at STP From the balanced equation, 5 moles of O2O_2 are required to produce 2 moles of NO. Moles of O2O_2 required = 0.25 mol NO×5 mol O22 mol NO=0.625 mol O20.25 \text{ mol NO} \times \frac{5 \text{ mol } O_2}{2 \text{ mol NO}} = 0.625 \text{ mol } O_2.

At STP (Standard Temperature and Pressure), 1 mole of any ideal gas occupies 22.4 L. Volume of O2O_2 required = Moles of O2×O_2 \times Molar volume at STP Volume of O2O_2 required = 0.625 mol×22.4 L/mol=14 L0.625 \text{ mol} \times 22.4 \text{ L/mol} = 14 \text{ L}.

Step 4: Calculate the Total Number of Atoms Present in the Products The products are NO, CO2CO_2, and SO2SO_2. We know 0.25 moles of NO are produced. From the balanced equation: Moles of CO2CO_2 produced = 0.25 mol NO×2 mol CO22 mol NO=0.25 mol CO20.25 \text{ mol NO} \times \frac{2 \text{ mol } CO_2}{2 \text{ mol NO}} = 0.25 \text{ mol } CO_2. Moles of SO2SO_2 produced = 0.25 mol NO×2 mol SO22 mol NO=0.25 mol SO20.25 \text{ mol NO} \times \frac{2 \text{ mol } SO_2}{2 \text{ mol NO}} = 0.25 \text{ mol } SO_2.

Calculate the number of atoms per molecule for each product:

  • NO: 1 N atom + 1 O atom = 2 atoms/molecule
  • CO2CO_2: 1 C atom + 2 O atoms = 3 atoms/molecule
  • SO2SO_2: 1 S atom + 2 O atoms = 3 atoms/molecule

Total moles of atoms in products: Atoms from NO = 0.25 mol NO×2 atoms/molecule=0.5 mol atoms0.25 \text{ mol NO} \times 2 \text{ atoms/molecule} = 0.5 \text{ mol atoms}. Atoms from CO2=0.25 mol CO2×3 atoms/molecule=0.75 mol atomsCO_2 = 0.25 \text{ mol } CO_2 \times 3 \text{ atoms/molecule} = 0.75 \text{ mol atoms}. Atoms from SO2=0.25 mol SO2×3 atoms/molecule=0.75 mol atomsSO_2 = 0.25 \text{ mol } SO_2 \times 3 \text{ atoms/molecule} = 0.75 \text{ mol atoms}.

Total moles of atoms in products = 0.5+0.75+0.75=2 mol atoms0.5 + 0.75 + 0.75 = 2 \text{ mol atoms}.

Total number of atoms in products = Total moles of atoms ×NA\times N_A Total number of atoms in products = 2 mol×6.022×1023 atoms/mol2 \text{ mol} \times 6.022 \times 10^{23} \text{ atoms/mol} Total number of atoms in products = 1.2044×10241.2044 \times 10^{24} atoms.

Summary of Results:

  • Number of molecules of C2N2S2C_2N_2S_2: 7.5275×10227.5275 \times 10^{22} molecules
  • Volume of O2O_2 required at STP: 14 L
  • Total number of atoms present in the products: 1.2044×10241.2044 \times 10^{24} atoms