Solveeit Logo

Question

Question: Find the number of integral values of n so that \[\sin x\left( \sin x+\cos x \right)=n\] has at leas...

Find the number of integral values of n so that sinx(sinx+cosx)=n\sin x\left( \sin x+\cos x \right)=n has at least one solution.

Explanation

Solution

Now we are given with function sinx(sinx+cosx)=n\sin x\left( \sin x+\cos x \right)=n . We will open the brackets and then use the formula sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} and 2sinxcosx=sin2x2\sin x\cos x=\sin 2x to rewrite the equation accordingly. Now we will rearrange the terms so that we get the equation in the form of sin2x\sin 2x and cos2x\cos 2x . Now we will divide the whole equation by 2\sqrt{2} . Now we know that cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} and sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} Hence we will substitute this values in the equation obtained. Now in the new equation formed we will use the formula sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B to simplify the equation. Finally we will use the fact that for any angle A. 1sinA1-1\le \sin A\le 1 . Hence we will get the inequality in n which we will solve to find possible integral values of n.

Complete step-by-step solution:
Now first consider the given function sinx(sinx+cosx)=n\sin x\left( \sin x+\cos x \right)=n .
Opening the bracket in the above equation we get sin2x+sinxcosx=n{{\sin }^{2}}x+\sin x\cos x=n
Now we know that sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} and 2sinxcosx=sin2x2\sin x\cos x=\sin 2x .
This means sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} and sinxcosx=sin2x2\sin x\cos x=\dfrac{\sin 2x}{2}
Now substituting this we get 1cos2x2+sin2x2=n\dfrac{1-\cos 2x}{2}+\dfrac{\sin 2x}{2}=n
Hence we have 1cos2x+sin2x2=n\dfrac{1-\cos 2x+\sin 2x}{2}=n
Now rearranging the given terms we get sin2xcos2x=2n1\sin 2x-\cos 2x=2n-1 .
Let us divide the whole equation by 2\sqrt{2} Hence we get
12sin2x12cos2x=2n12\dfrac{1}{\sqrt{2}}\sin 2x-\dfrac{1}{\sqrt{2}}\cos 2x=\dfrac{2n-1}{\sqrt{2}}
Now we have that the values of cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} and sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
Hence substituting this in the above equation we get.
cos(π4)sin2xsin(π4)cos2x=2n12\cos \left( \dfrac{\pi }{4} \right)\sin 2x-\sin \left( \dfrac{\pi }{4} \right)\cos 2x=\dfrac{2n-1}{\sqrt{2}}
Now we know that sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B . Hence using this formula we will simplify the equation to get.
sin(2xπ4)=2n12.......................(1)\sin \left( 2x-\dfrac{\pi }{4} \right)=\dfrac{2n-1}{\sqrt{2}}.......................\left( 1 \right)
Now we know that 1sin(2xπ4)1-1\le \sin \left( 2x-\dfrac{\pi }{4} \right)\le 1
Hence from equation (1) we get.
12n12<1-1\le \dfrac{2n-1}{\sqrt{2}}<1

& \Rightarrow -\sqrt{2}\le 2n-1\le \sqrt{2} \\\ & \Rightarrow 1-\sqrt{2}\le 2n\le \sqrt{2}+1 \\\ & \Rightarrow \dfrac{1-\sqrt{2}}{2}\le n\le \dfrac{\sqrt{2}+1}{2} \\\ \end{aligned}$$ Now we have $\sqrt{2}=1.41$ Now substituting this we get. $\begin{aligned} & \dfrac{1-1.41}{2}\le n\le \dfrac{1+1.41}{2} \\\ & \Rightarrow \dfrac{-0.41}{2}\le n\le \dfrac{2.41}{2} \\\ & \Rightarrow -0.205\le n\le 1.205 \\\ \end{aligned}$ **Hence the only possible integral values of n is 0 and 1. Hence only 2 Integral values of n are possible.** **Note:** Now instead of using the range of sin to form inequality we can also find the maximum and minimum value of $\sin 2x-\cos 2x$ by differentiating and equating it to zero. Hence we will get inequality in n again and we can solve it to find the required integral values.