Solveeit Logo

Question

Mathematics Question on Nature of Roots

Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) 2x23x+5=02x^2 – 3x + 5 = 0 (ii) 3x243x+4=03x^2 – 4\sqrt3 x + 4 = 0 (iii) 2x26x+3=02x^2 – 6x + 3 = 0

Answer

We know that for a quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, discriminant is b24acb^2 − 4ac.

  • If b24acb^2 − 4ac > 0 → two distinct real roots
  • If b24acb^2 − 4ac = 0 → two equal real roots
  • If b24acb^2 − 4ac < 0 → no real roots

(i) 2x23x+5=02x^2 −3x + 5 = 0
Comparing this equation with ax2+bx+c=0ax^2 + bx + c = 0, we obtain
a = 2, b = −3, c = 5

Discriminant = b24acb^2 − 4ac =(3)24(2)(5)(− 3)2 − 4 (2) (5)= 9409 – 40 = 31−31
As b24ac<0b^2 − 4ac < 0, Therefore, no real root is possible for the given equation.


**(ii) **3x243x+4=03x^2 -4\sqrt3 x +4 =0
Comparing this equation with ax2+bx+c=0ax^2 + bx + c = 0, we obtain
a=33 , b= 434\sqrt3, c=44

Discriminant =b24acb^2 -4ac = (43)24(3)(4)(-4\sqrt3)^2 -4(3)(4) = 484848 − 48 = 0
As b24acb^2 − 4ac = 0, Therefore, real roots exist for the given equation and they are equal to each other.

And the roots will be 𝑏2𝑎−\frac{𝑏}{2𝑎} and 𝑏2𝑎−\frac{𝑏}{2𝑎} .
𝑏2𝑎−\frac{𝑏}{2𝑎}= (43)2×3-\frac{(-4\sqrt3)}{ 2 \times 3 }=436\frac{ 4\sqrt3}{6} = 233\frac{2\sqrt3 }{3} = 23\frac{2}{ \sqrt3}

Therefore, the roots are 23\frac{2}{ \sqrt3} and 23\frac{2}{ \sqrt3} .


(iii) 2x26x+3=02x^2 − 6x + 3 = 0
Comparing this equation with ax2+bx+c=0ax^2 + bx + c = 0, we obtain
a = 2, b = −6, c = 3

Discriminant = b24acb^2 − 4ac= (6)24(2)(3)(− 6)2 − 4 (2) (3)= 362436 − 24 = 1212
As b^2 − 4ac$$> 0, Therefore, distinct real roots exist for this equation as follows.

x= b±b24ac2a-\frac{b±\sqrt{b^2 -4ac} }{ 2a}
= (6)±(6)24(2)(3)2(2)-\frac{(-6) ± \sqrt{(-6)^2 - 4(2)(3)}}{ 2(2)}
= 6±124\frac{6±\sqrt{12}}{4 }= 6±234\frac{6 ± 2\sqrt 3}4
= 3±32\frac{3±\sqrt 3}{2}

Therefore, the roots are 3+32\frac{3+\sqrt 3}{2} or332\frac{3-\sqrt 3}{2}.