Solveeit Logo

Question

Question: Find the \(n^{th}\) term and sum to n terms of the series: \(\begin{aligned} & 1+5+13+29+61+....

Find the nthn^{th} term and sum to n terms of the series:
1+5+13+29+61+........ a)Tn=2n+13 Sn=(22+23+............+2n+1)3n b)Tn=2n+1+3 Sn=(22+23+............+2n+1)+3n c)Tn=2n+13 Sn=(22+23+............2n+1)3n d)Tn=2n13 Sn=(22+23+............+2n+1)+3n \begin{aligned} & 1+5+13+29+61+........ \\\ & a){{T}_{n}}={{2}^{n+1}}-3 \\\ & \,\,\,\,{{S}_{n}}=({{2}^{2}}+{{2}^{3}}+............+{{2}^{n+1}})-3n \\\ & b){{T}_{n}}={{2}^{n+1}}+3 \\\ & \,\,\,\,{{S}_{n}}=({{2}^{2}}+{{2}^{3}}+............+{{2}^{n+1}})+3n \\\ & c){{T}_{n}}={{2}^{n+1}}-3 \\\ & \,\,\,\,{{S}_{n}}=({{2}^{2}}+{{2}^{3}}+............-{{2}^{n+1}})-3n \\\ & d){{T}_{n}}={{2}^{n-1}}-3 \\\ & \,\,\,\,{{S}_{n}}=({{2}^{2}}+{{2}^{3}}+............+{{2}^{n+1}})+3n \\\ \end{aligned}

Explanation

Solution

Write the given terms as:
1=(223);5=(233);13=(243);29=(253)  \begin{aligned} & 1=({{2}^{2}}-3);\,5=({{2}^{3}}-3);\,13=({{2}^{4}}-3);\,29=({{2}^{5}}-3) \\\ & \\\ \end{aligned}
and so on. Observe the obtained pattern and write the nthn^{th} term (Tn) of the series. Now to write the expression of the sum of these ‘n’ terms of the series, group the terms containing exponents of 22 together and the constant term 33 together. Find the sum of these ‘n’ 33’s and get the answer.

Complete step by step answer:
Here we have been provided with the series: 1+5+13+29+61+..........nterms1+5+13+29+61+..........n\,\text{terms}. We have been asked to determine the expression for nthn^{th} term and sum of these n terms of the series.
Let us denote given term as T1,T2,T3,.............{{T}_{1}},{{T}_{2}},{{T}_{3}},............. and so on where T1{{T}_{1}} represents first term T2{{T}_{2}} represents second term, T3{{T}_{3}} represents third term and so on. So, we can write the given terms as:

& {{T}_{1}}=1={{2}^{2}}-3={{2}^{1+1}}-3 \\\ & {{T}_{2}}=5={{2}^{3}}-3={{2}^{2+1}}-3 \\\ & {{T}_{3}}=13={{2}^{4}}-3={{2}^{3+1}}-3 \\\ & {{T}_{4}}=29={{2}^{5}}-3={{2}^{4+1}}-3 \\\ & {{T}_{5}}=61={{2}^{6}}-3={{2}^{5+1}}-3 \\\ \end{aligned}$$ So, on observing the above pattern we can write the expression for $n^{th}$ term by Tn as: $\Rightarrow {{T}_{n}}={{2}^{n+1}}-3........(i)$ Now, let us find the expression for the sum of these ‘n’ terms. So, we have, $\Rightarrow {{S}_{n}}({{2}^{2}}-3)+({{2}^{3}}-3)+.............+({{2}^{n+1}}-3)$ So, grouping the terms containing exponents of $2$ together and all the $3$’s together, we have, $\Rightarrow {{S}_{n}}({{2}^{2}}+{{2}^{3}}+.............+{{2}^{n+1}})-(3+3+3+..........n\,\text{times})$ Clearly, we can see that the constant term $3$’s is added n times so its sum will be the product of $3$ and n i.e. $3$n so, we get, $\Rightarrow {{S}_{n}}({{2}^{2}}+{{2}^{3}}+.............+{{2}^{n+1}})-3n..........(ii)\,$ From the obtained expression of Tn and Sn in equations (i) and (ii) respectively, **we have the conclusion that option (a) is the correct answer.** **Note:** One may note that in the expression of Sn we do not have to find the simplified sum of the expression $({{2}^{2}}+{{2}^{3}}+.............+{{2}^{n+1}})$because in the options we aren’t provided the simplified form. Although if you want to simplify the expression $({{2}^{2}}+{{2}^{3}}+.............+{{2}^{n+1}})$ then apply the formula given as $S=\dfrac{a({{r}^{n}}-1)}{r-1}$, where ‘a’ is the first term ‘r’ is the common ratio and ‘s’ denotes the sum of ‘n’ terms of G.P.