Solveeit Logo

Question

Question: Find the multiplicative inverse of the complex number –i?...

Find the multiplicative inverse of the complex number –i?

Explanation

Solution

Hint: Here, we will find the solution using the formulae of multiplicative inverse of a complex number i.e. z1=zˉz2{z^{ - 1}} = \dfrac{{\bar z }}{{{{\left| z \right|}^2}}}.

Complete step-by-step answer:
We need to find multiplicative inverse of –i
So let z=iz = - i
Now multiplicative inverse is z1{z^{ - 1}}, so z1=zˉz2(1){z^{ - 1}} = \dfrac{{\bar z }}{{{{\left| z \right|}^2}}} \to (1)
Conjugate of z is,
zˉ=i\bar z = i
Modulus of z is,
\Rightarrow z=Re(z)2+Img(z)2\left| z \right| = \sqrt {\operatorname{Re} {{(z)}^2} + \operatorname{Im} g{{(z)}^2}}
\Rightarrow z=(0)2+(1)2=1\left| z \right| = \sqrt {{{(0)}^2} + {{( - 1)}^2}} = 1
\Rightarrow z2=1{\left| z \right|^2} = 1

Therefore
z1=i1=i{z^{ - 1}} = \dfrac{i}{1} = i
Hence, the answer to this problem is i.

Note: Whenever we are being asked to find the multiplicative inverse simply find z1{z^{ - 1}} and use the formulae for z1{z^{ - 1}} as mentioned above this will give you an answer.