Solveeit Logo

Question

Question: Find the moment of inertia about axis 1 (diameter of hemisphere) of solid hemisphere \((m,R)\). (A...

Find the moment of inertia about axis 1 (diameter of hemisphere) of solid hemisphere (m,R)(m,R).
(A) mR25\dfrac{{m{R^2}}}{5}
(B) 25mR2\dfrac{2}{5}m{R^2}
(C) 23mR2\dfrac{2}{3}m{R^2}
(D) 173320mR2\dfrac{{173}}{{320}}m{R^2}

Explanation

Solution

Hint First of all get the mass dmdm of the disc by using the expression:
dm=(mVH)×VDdm = \left( {\dfrac{m}{{{V_H}}}} \right) \times {V_D}
where, mm is the mass of hemisphere
VH{V_H} is the volume of hemisphere
VD{V_D} is the volume of disc
Now, use the formula
Iyy=Icm+mr2{I_{yy'}} = {I_{cm}} + m{r^2}
Then, integrate it with the limit from 00 to RR
After solving we will get the value of Iyy{I_{yy'}} then, use the value of ρ=3m2πR3\rho = \dfrac{{3m}}{{2\pi {R^3}}}
Then, if II displace them parallel to the axis and again join them to complete a sphere
2I=25mR22I = \dfrac{2}{5}m{R^2}

Complete Step by Step Solution
Suppose that hemisphere is constructed by small discs
Mass dmdmof disc= dm=(mVH)×VDdm = \left( {\dfrac{m}{{{V_H}}}} \right) \times {V_D}
dm=(m23πR3)(πy2dx) dm=ρ(πy2dx)  \therefore dm = \left( {\dfrac{m}{{\dfrac{2}{3}\pi {R^3}}}} \right)\left( {\pi {y^2}dx} \right) \\\ dm = \rho \left( {\pi {y^2}dx} \right) \\\
Because, ρ=m23πR3\rho = \dfrac{m}{{\dfrac{2}{3}\pi {R^3}}}

According to parallel and perpendicular axis theorem we get
Iyy=Icm+mr2{I_{yy'}} = {I_{cm}} + m{r^2}
dIyy=(dm)y24+(dm)x2\therefore d{I_{yy'}} = (dm)\dfrac{{{y^2}}}{4} + (dm){x^2}
Now, integrating both sides
Iyy=0R(dm)y24+0Rdmx2 0R(ρπy2dx)y24+0R(ρπy2dx)x2  {I_{yy'}} = \int\limits_0^R {(dm)\dfrac{{{y^2}}}{4} + } \int\limits_0^R {dm} {x^2} \\\ \Rightarrow \int\limits_0^R {(\rho \pi {y^2}dx)\dfrac{{{y^2}}}{4} + } \int\limits_0^R {(\rho \pi {y^2}dx){x^2}} \\\
Now, put the limits
Iyy=ρπ4[R55+R52R2R33]+[ρπR5(R33)ρπ(R55)] =ρπR5[14+12014×23]+ρπR5[1315] =ρπR5(415)  {I_{yy'}} = \dfrac{{\rho \pi }}{4}\left[ {\dfrac{{{R^5}}}{5} + {R^5} - 2{R^2}\dfrac{{{R^3}}}{3}} \right] + \left[ {\rho \pi {R^5}\left( {\dfrac{{{R^3}}}{3}} \right) - \rho \pi \left( {\dfrac{{{R^5}}}{5}} \right)} \right] \\\ = \rho \pi {R^5}\left[ {\dfrac{1}{4} + \dfrac{1}{{20}} - \dfrac{1}{4} \times \dfrac{2}{3}} \right] + \rho \pi {R^5}\left[ {\dfrac{1}{3} - \dfrac{1}{5}} \right] \\\ = \rho \pi {R^5}\left( {\dfrac{4}{{15}}} \right) \\\
Now, putting the value of ρ\rho in the above equation
Iyy=3m2πR3πR5415=25mR2 I=25mR2  {I_{yy'}} = \dfrac{{3m}}{{2\pi {R^3}}}\pi {R^5}\dfrac{4}{{15}} = \dfrac{2}{5}m{R^2} \\\ \therefore I = \dfrac{2}{5}m{R^2} \\\
But if IIdisplaces the parallel to axis and join them to complete the sphere then,
2I=25mR22I = \dfrac{2}{5}m{R^2}
After cancelling 2 on both sides we get
I=mR25I = \dfrac{{m{R^2}}}{5}

Hence, option (A) is the correct answer

Note Moment of Inertia of continuous bodies is 25mR2\dfrac{2}{5}m{R^2}
Moment of Inertia of disc about centre of mass is mR22\dfrac{{m{R^2}}}{2}
Moment of inertia of sphere about centre of mass is 25mR2\dfrac{2}{5}m{R^2}