Solveeit Logo

Question

Question: Find the moles of h2o produce when 5.8g of butane is burn also find the molecules of o2 required and...

Find the moles of h2o produce when 5.8g of butane is burn also find the molecules of o2 required and the atoms present in the h2o that produce at given condition also find the total no. Of atoms produce in the product 2c4h10 + 13o2 + 10h2o + 8co2

Answer

Moles of H2O = 0.5 mol, Molecules of O2 required = 3.9143 x 10^23, Atoms in H2O = 9.033 x 10^23, Total atoms in products = 1.62594 x 10^24

Explanation

Solution

The problem involves stoichiometry based on the combustion of butane. We are given the balanced chemical equation and the mass of butane. We need to find several quantities related to the reactants and products.

The balanced chemical equation for the combustion of butane is: 2C4H10+13O210H2O+8CO22C_4H_{10} + 13O_2 \rightarrow 10H_2O + 8CO_2

1. Calculate moles of Butane (C4H10C_4H_{10}): Molar mass of C = 12 g/mol Molar mass of H = 1 g/mol Molar mass of C4H10=(4×12)+(10×1)=48+10=58C_4H_{10} = (4 \times 12) + (10 \times 1) = 48 + 10 = 58 g/mol. Given mass of butane = 5.8 g. Moles of butane = Given massMolar mass=5.8 g58 g/mol=0.1 mol\frac{\text{Given mass}}{\text{Molar mass}} = \frac{5.8 \text{ g}}{58 \text{ g/mol}} = 0.1 \text{ mol}.

2. Moles of H₂O produced: From the balanced equation, 2 moles of C4H10C_4H_{10} produce 10 moles of H2OH_2O. Using mole ratio: Moles of H2O=0.1 mol C4H10×10 mol H2O2 mol C4H10=0.1×5=0.5 mol H2OH_2O = 0.1 \text{ mol } C_4H_{10} \times \frac{10 \text{ mol } H_2O}{2 \text{ mol } C_4H_{10}} = 0.1 \times 5 = 0.5 \text{ mol } H_2O.

3. Molecules of O₂ required: From the balanced equation, 2 moles of C4H10C_4H_{10} require 13 moles of O2O_2. Using mole ratio: Moles of O2=0.1 mol C4H10×13 mol O22 mol C4H10=0.1×6.5=0.65 mol O2O_2 = 0.1 \text{ mol } C_4H_{10} \times \frac{13 \text{ mol } O_2}{2 \text{ mol } C_4H_{10}} = 0.1 \times 6.5 = 0.65 \text{ mol } O_2. To find the number of molecules, multiply by Avogadro's number (NA=6.022×1023N_A = 6.022 \times 10^{23} molecules/mol): Molecules of O2=0.65 mol×6.022×1023 molecules/mol=3.9143×1023O_2 = 0.65 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 3.9143 \times 10^{23} molecules.

4. Atoms present in the H₂O produced: Moles of H2OH_2O produced = 0.5 mol. Number of H2OH_2O molecules = 0.5 mol×6.022×1023 molecules/mol=3.011×10230.5 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 3.011 \times 10^{23} molecules. Each H2OH_2O molecule contains 2 hydrogen atoms and 1 oxygen atom, totaling 3 atoms per molecule. Total atoms in H2O=3.011×1023 molecules×3 atoms/molecule=9.033×1023H_2O = 3.011 \times 10^{23} \text{ molecules} \times 3 \text{ atoms/molecule} = 9.033 \times 10^{23} atoms.

5. Total number of atoms produced in the products (H₂O and CO₂): First, calculate moles of CO2CO_2 produced. From the balanced equation, 2 moles of C4H10C_4H_{10} produce 8 moles of CO2CO_2. Using mole ratio: Moles of CO2=0.1 mol C4H10×8 mol CO22 mol C4H10=0.1×4=0.4 mol CO2CO_2 = 0.1 \text{ mol } C_4H_{10} \times \frac{8 \text{ mol } CO_2}{2 \text{ mol } C_4H_{10}} = 0.1 \times 4 = 0.4 \text{ mol } CO_2. Number of CO2CO_2 molecules = 0.4 mol×6.022×1023 molecules/mol=2.4088×10230.4 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 2.4088 \times 10^{23} molecules. Each CO2CO_2 molecule contains 1 carbon atom and 2 oxygen atoms, totaling 3 atoms per molecule. Total atoms in CO2=2.4088×1023 molecules×3 atoms/molecule=7.2264×1023CO_2 = 2.4088 \times 10^{23} \text{ molecules} \times 3 \text{ atoms/molecule} = 7.2264 \times 10^{23} atoms.

Total atoms in products = Total atoms in H2OH_2O + Total atoms in CO2CO_2 Total atoms in products = 9.033×1023 atoms+7.2264×1023 atoms9.033 \times 10^{23} \text{ atoms} + 7.2264 \times 10^{23} \text{ atoms} Total atoms in products = (9.033+7.2264)×1023 atoms=16.2594×1023 atoms(9.033 + 7.2264) \times 10^{23} \text{ atoms} = 16.2594 \times 10^{23} \text{ atoms} Total atoms in products = 1.62594×10241.62594 \times 10^{24} atoms.

Summary of Results:

  • Moles of H₂O produced: 0.5 mol
  • Molecules of O₂ required: 3.9143×10233.9143 \times 10^{23} molecules
  • Atoms present in the H₂O produced: 9.033×10239.033 \times 10^{23} atoms
  • Total number of atoms produced in the products (H₂O and CO₂): 1.62594×10241.62594 \times 10^{24} atoms