Solveeit Logo

Question

Question: Find the modulus of the complex number \[Z = 2 + 3i\]....

Find the modulus of the complex number Z=2+3iZ = 2 + 3i.

Explanation

Solution

Hint:Let Z=a+biZ = a + bi be a complex number. Then, the modulus of a complex number ZZ , denoted by Z\left| Z \right| , is defined to be the non-negative real number Z=(Re(z))2+(Im(z))2=a2+b2\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} .

Complete step-by-step answer:
Given, complex number Z=2+3iZ = 2 + 3i .
Real part of complex number ZZ is Re(Z)=a=2\operatorname{Re} \left( Z \right) = a = 2 .
Imaginary part of complex number ZZ is Im(Z)=b=3\operatorname{Im} \left( Z \right) = b = 3 .
Now, we apply the formula of modulus of complex number ZZ .
Z=(Re(z))2+(Im(z))2=a2+b2\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}}
Put the value of a and b in the above formula.

Z=(Re(z))2+(Im(z))2=a2+b2 Z=(2)2+(3)2 Z=4+9 Z=13  \Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\\ \Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\\ \Rightarrow \left| Z \right| = \sqrt {4 + 9} \\\ \Rightarrow \left| Z \right| = \sqrt {13} \\\

So, the modulus of complex number Z=2+3iZ = 2 + 3i is 13\sqrt {13} .

Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.