Solveeit Logo

Question

Question: Find the modulus of \(\dfrac{{1 + i}}{{1 - i}} - \dfrac{{1 - i}}{{1 + i}}\)....

Find the modulus of 1+i1i1i1+i\dfrac{{1 + i}}{{1 - i}} - \dfrac{{1 - i}}{{1 + i}}.

Explanation

Solution

Hint: To solve such questions we need to transform it in the form of z=a+ibz = a + ib. Here, we have to rationalize it or take LCM to transform it to a+iba + ib form and then calculate the modulus.

Complete step-by-step answer:
We need to find the modulus of 1+i1i1i1+i\dfrac{{1 + i}}{{1 - i}} - \dfrac{{1 - i}}{{1 + i}}.
Consider z=1+i1i1i1+iz = \dfrac{{1 + i}}{{1 - i}} - \dfrac{{1 - i}}{{1 + i}}
Taking LCM, we get (1+i)2(1i)2(1i)(1+i)\dfrac{{{{(1 + i)}^2} - {{(1 - i)}^2}}}{{(1 - i)(1 + i)}}
z=1+i2+2i1i2+2i12i2\Rightarrow z = \dfrac{{1 + {i^2} + 2i - 1 - {i^2} + 2i}}{{{1^2} - {i^2}}}
z=4i1+1\Rightarrow z = \dfrac{{4i}}{1 + 1} (as we know i2=1{i^2} = - 1)
z=2i\Rightarrow z = 2i
We obtain z=2iz = 2i which is the form z=a+ibz = a + ib
z=2i=22=2\therefore \left| z \right| = \left| {2i} \right| = \sqrt {{2^2}} = 2 (if z=a+ibz = a + ib then z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} )

Note: Modulus of any complex number zz where z=a+ibz = a + ib, then z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} where aa is real part and bb is imaginary part of the complex number zz. Also i2=1{i^2} = - 1.