Solveeit Logo

Question

Question: Find the modulus and the argument of the complex number\(z = - 1 - i\sqrt 3 \)....

Find the modulus and the argument of the complex numberz=1i3z = - 1 - i\sqrt 3 .

Explanation

Solution

Hint-These types of questions can be solved by using the formula of modulus and argument of
the complex number.
Given complex number is
z=1i3z = - 1 - i\sqrt 3
Now we know that the general form of complex number is
z=x+iyz = x + iy
Now comparing the above two we get,
x=1x = - 1 and  y=3{\text{ }}y = - \sqrt 3
Now let’s find the modulus of the complex number.
We know that the modulus of a complex number is z\left| z \right|
z=x2+y2\left| z \right| = \sqrt {{x^2} + {y^2}}
Now putting the value of xx and yy we get,
z=(1)2+(3)2 z=1+3 z=4 z=2  \left| z \right| = \sqrt {{{( - 1)}^2} + {{( - \sqrt 3 )}^2}} \\\ \left| z \right| = \sqrt {1 + 3} \\\ \left| z \right| = \sqrt 4 \\\ \left| z \right| = 2 \\\
Therefore, the modulus of a given complex number is 22.
Now let’s find the argument of the complex number.
Now we know that the general form of complex number is
z=x+iyz = x + iy
Let xx be rcosθr\cos \theta andyy be rsinθr\sin \theta where rr is the modulus of the complex number.
Now putting the values of xx and yy in zz we get,
z=rcosθ+irsinθz = r\cos \theta + ir\sin \theta
Now comparing the above two we get,
1i3 =rcosθ+irsinθ- 1 - i\sqrt 3 {\text{ }} = r\cos \theta + ir\sin \theta
Now, comparing the real parts we get,
 - 1 = rcosθ{\text{ - 1 = }}r\cos \theta
Now, putting the value of rr in the above equation we get,
 - 1 = 2cosθ or cosθ=12   {\text{ - 1 = 2}}\cos \theta \\\ {\text{or }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }} \\\
Similarly, compare the imaginary parts and put the value of rr we get,
\-3=2sinθ or sinθ=32  \- \sqrt 3 = 2\sin \theta \\\ {\text{or }}\sin \theta = - \dfrac{{\sqrt 3 }}{2} \\\
Hence, sinθ=32 and cosθ=12 \sin \theta = - \dfrac{{\sqrt 3 }}{2}{\text{ and }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }}
orθ = 60\theta {\text{ = }}{60^ \circ }
Now we can clearly see that the values of both sinθ\sin \theta andcosθ\cos \theta are negative.
And we know that they both are negative in 3rd{3^{rd}} quadrant.
Therefore, the argument is in 3rd{3^{rd}} quadrant.
Argument = - (180θ){\text{ = - (18}}{0^ \circ } - \theta {\text{)}}
 = - (180θ) = - (18060)  = - (120)  = - 120  {\text{ = - (18}}{0^ \circ } - \theta {\text{)}} \\\ = {\text{ - (18}}{0^ \circ } - {60^ \circ }{\text{)}} \\\ {\text{ = - (12}}{{\text{0}}^ \circ }{\text{)}} \\\ {\text{ = - 12}}{0^ \circ } \\\
Now converting it in π\pi form we get,
=120×π180 =2π3  = - {120^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\\ = - \dfrac{{2\pi }}{3} \\\
Hence, the argument of complex number is 2π3 - \dfrac{{2\pi }}{3}
Note- Whenever we face such types of questions the key concept is that we simply compare the given
complex number with its general form and then find the value of xx and yy and put it in the formula
of modulus and argument of the complex number