Solveeit Logo

Question

Question: Find the modulus and argument of the complex number \(z = \dfrac{{1 - 2i}}{{1 + 3i}}\) in polar form...

Find the modulus and argument of the complex number z=12i1+3iz = \dfrac{{1 - 2i}}{{1 + 3i}} in polar form.

Explanation

Solution

First, multiply and divide by the conjugate of the denominator to remove the imaginary part from the denominator and simplify it. After that find the modulus of z by the formula z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} . Then, find the argument of z by tan1(yx){\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right).

Complete step by step answer:
Given, z=12i1+3iz = \dfrac{{1 - 2i}}{{1 + 3i}}
Multiply and divide z with the conjugate of the denominator,
z=12i1+3i×13i13i\Rightarrow z = \dfrac{{1 - 2i}}{{1 + 3i}} \times \dfrac{{1 - 3i}}{{1 - 3i}}
Multiply the terms on the right to get real numbers in the denominator,
z=1+6i22i3i19i2\Rightarrow z = \dfrac{{1 + 6{i^2} - 2i - 3i}}{{1 - 9{i^2}}}
As we know i2=1{i^2} = - 1, substitute the value in the equation,
z=1+6(1)2i3i19(1)\Rightarrow z = \dfrac{{1 + 6\left( { - 1} \right) - 2i - 3i}}{{1 - 9\left( { - 1} \right)}}
Open the brackets and add the like terms,
z=55i10\Rightarrow z = \dfrac{{ - 5 - 5i}}{{10}}
Separate the real part and imaginary parts,
z=510i510\Rightarrow z = - \dfrac{5}{{10}} - i\dfrac{5}{{10}}
Cancel out the common factors,
z=1212i\Rightarrow z = - \dfrac{1}{2} - \dfrac{1}{2}i
The formula of modulus is,
z=a2+b2\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}}
Here a=12a = - \dfrac{1}{2} and b=12b = - \dfrac{1}{2}. Then,
z=(12)2+(12)2\Rightarrow \left| z \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{\left( { - \dfrac{1}{2}} \right)}^2}}
Square the terms in the bracket,
z=14+14\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4} + \dfrac{1}{4}}
Since the denominator is the same. So, add the numerator,
z=24\Rightarrow \left| z \right| = \sqrt {\dfrac{2}{4}}
Cancel out the common factors from the numerator and denominator,
z=12\Rightarrow \left| z \right| = \dfrac{1}{{\sqrt 2 }}
Now, tanα=ba\tan \alpha = \left| {\dfrac{b}{a}} \right|. Then,
tanα=1212\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{1}{2}}}{{ - \dfrac{1}{2}}}} \right|
Cancel out the common factor,
tanα=1\Rightarrow \tan \alpha = 1
Take tan1{\tan ^{ - 1}} on both sides,
α=tan11 =π4  \alpha = {\tan ^{ - 1}}1 \\\ = \dfrac{\pi }{4} \\\
As both of the real part and the imaginary part of the complex number is negative. The number will lie in 3rd quadrant. Then,
arg(z)=π+α\Rightarrow \arg \left( z \right) = \pi + \alpha
Substitute the value of α\alpha ,
arg(z)=π+π4\Rightarrow \arg \left( z \right) = \pi + \dfrac{\pi }{4}
Add the terms on the right side,
arg(z)=5π4\Rightarrow \arg \left( z \right) = \dfrac{{5\pi }}{4}

Hence, the modulus is 12\dfrac{1}{{\sqrt 2 }} and the argument is 5π4\dfrac{{5\pi }}{4}.

Note:
The complex numbers are the field C of numbers of the form x+iyx + iy, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as z=x+iyz = x + iy.