Solveeit Logo

Question

Question: Find the modulus and amplitude of the given complex number : \(\sqrt 3 - i\)...

Find the modulus and amplitude of the given complex number : 3i\sqrt 3 - i

Explanation

Solution

For any complex number z=x+iyz = x + iy, Modulus is z=x2+y2|z| = \sqrt {{x^2} + {y^2}} and amplitude θ=2nπ+arg(z)\theta = 2n\pi + \arg (z)

Complete step by step answer:

\Rightarrow z=3iz = \sqrt 3 - i
From the diagram it can be seen that the point related to complex number z is in the fourth quadrant (3,1)(\sqrt 3 , - 1).
Comparing it with the standard equation, we get x = 3\sqrt 3 and y = -1.
Modulus z|z| is distance of point from origin.
\Rightarrow z=(3)2+(1)2|z| = \sqrt {{{(\sqrt 3 )}^2} + {{( - 1)}^2}}
\Rightarrow =3+1=4=2 = \sqrt {3 + 1} = \sqrt 4 = 2
\Rightarrow arg(z)=tan1yx\arg (z) = - {\tan ^{ - 1}}\left| {\dfrac{y}{x}} \right| [As point is in IV quadrant]
\Rightarrow tan113 - {\tan ^{ - 1}}\left| {\dfrac{{ - 1}}{{\sqrt 3 }}} \right|
\Rightarrow π6 \dfrac{{ - \pi }}{6}
Amplitude =2nππ6 = 2n\pi - \dfrac{\pi }{6}

Note: General mistake done in calculating argument in fourth quadrant.
Sometimes we mistakenly take (2πα)(2\pi - \alpha ) in place of α- \alpha