Solveeit Logo

Question

Question: Find the mode and mean deviation w.r.t mode for the following table Marks| \[0 - 10\] | \[10 ...

Find the mode and mean deviation w.r.t mode for the following table

Marks0100 - 10102010 - 20203020 - 30304030 - 40405040 - 50
No. of Students5512123030101033
Explanation

Solution

We are required to measure mean deviation, which indicates how far the values are from the middle value.
Since we have grouped data, we must calculate the class midpoints to obtain the termfidi{f_i}{d_i}
The mean deviation will be calculated using the mode formula.
Formula used:
Mode=l+  (ff12ff1    f2)  ×  hMode = l + \;\left( {\dfrac{{f - {f_1}}}{{2f - {f_1} - \;\;{f_2}}}} \right)\; \times \;h
Mean  Deviation  about  Mode  =  fidifiMean\;Deviation\;about\;Mode\; = \;\dfrac{{\sum {{f_i}{d_i}} }}{{\sum {{f_i}} }}

Complete answer:
We'll start by calculating mode.
The formula for determining Mode is:
Mode=l+  (ff12ff1    f2)  ×  hMode = l + \;\left( {\dfrac{{f - {f_1}}}{{2f - {f_1} - \;\;{f_2}}}} \right)\; \times \;h
where l=l = the modal class's the lower boundary
f=f = Frequency of modal class
  f1=\;{f_1} = Frequency of class preceding the modal class
f2={f_2} = Frequency of class succeeding the modal class
h=h = size of the class interval
Let's tabulate the data and then go into calculation mode.
For the first-class interval,0100 - 10 we will measure the following terms.
Class  midpoints  =  10  +  02  =  5Class\;midpoints\; = \;\dfrac{{10\; + \;0}}{2}\; = \;5
We now know that the modal class is the one with the highest frequency.
The highest frequency is 3030, which corresponds to the203020 - 30class.
As a result, the Modal class ranges from203020 - 30.
We'll now get the values for l,f,f1,f2l,f,{f_1},{f_2} and hh as follows:
l=20,h=10,f=30,f1=12,l = 20,h = 10,f = 30,{f_1} = 12, and f2=10{f_2} = 10
To calculate mode, we will substitute these values.
Mode=l+  (ff12ff1    f2)  ×  hMode = l + \;\left( {\dfrac{{f - {f_1}}}{{2f - {f_1} - \;\;{f_2}}}} \right)\; \times \;h
=20+  (30    122×30    12    10)  ×  10= 20 + \;\left( {\dfrac{{30\; - \;12}}{{2 \times 30\; - \;12\; - \;10}}} \right)\; \times \;10
=20+  (1838)  ×  10= 20 + \;\left( {\dfrac{{18}}{{38}}} \right)\; \times \;10
=  20+  4.7= \;20 + \;4.7
=  24.7= \;24.7
We will measure xi    M\left| {{x_i}\; - \;M} \right| in the table using this value of Mode (MM).
Let us now measure thefidi{f_i}{d_i}deviation for the first-class interval of 0100 - 10
We'll do the same thing with the other class intervals and tabulate the results as follows:

Class Interval (C.I.C.I.)| Frequency (ff)| Class midpoints (xi{x_i})| Deviation di  =  xi    M  =  xi    24.7\left| {{d_i}} \right|\; = \;\left| {{x_i}\; - \;M} \right|\; = \;\left| {{x_i}\; - \;24.7} \right|| fidi{f_i}{d_i}
---|---|---|---|---
0100 - 10| 55| 55| 19.719.7| 98.598.5
102010 - 20| 1212| 1515| 9.79.7| 116.4116.4
203020 - 30| 3030| 2525| 0.30.3| 99
0400 - 40| 1010| 3535| 10.310.3| 103103
405040 - 50| 33| 4545| 20.320.3| 60.960.9
| fi  =  60\sum {{f_i}} \; = \;60| | | fidi  =  387.8\sum {{f_i}{d_i}} \; = \;387.8

Let's evaluate the mean deviation about mode now.
Mean  Deviation  about  Mode  =  fidifi  =  387.860  =  6.46Mean\;Deviation\;about\;Mode\; = \;\dfrac{{\sum {{f_i}{d_i}} }}{{\sum {{f_i}} }}\; = \;\dfrac{{387.8}}{{60}}\; = \;6.46
Therefore, we get theMode=24.7Mode = 24.7and theMean Deviation about ModeMean{\text{ }}Deviation{\text{ }}about{\text{ }}Mode=6.46 = 6.46

Note:
We just make use of the mean, median, and mode; where mean is the average that will be used of the standard deviation also.
Median is all about the midpoint in the distribution.
And we calculated midpoints deviation and we will build three columns. It's important to keep in mind to multiply the proper columns and terms.